Hardware-aware Algorithms
for Sequence Modeling

Tri Dao
https://tridao.me

https://tridao.me

Machine Learning Has Made Exciting Progress

Fix Bugs Generate Art Design Drugs

(ChatGPT/GPT4 - OpenAl) (Stable Diffusion — Stability.Al) (AlphaFold — DeepMind)

-1 Findtheb ith this code:
E i ug wi i

for(vari=0;i<5;i++) {
setTimeout(() => console.log(i), 1000)

LNENEY

The code contains a bug that will cause it to always print the number 5 to the console,
rather than the expected sequence of numbers from O to 4. This is because the
“setTimeout™ function creates a closure that captures the value of the i~ variable, but

the “1i" variable is changed before the callback function is executed.

To fix this bug, the code can be modified to create a new variable in the loop that is

passed to the “setTimeout™ callback function, rather than using the loop variable directly.

T1037 / 6vr4d T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

This will ensure that each callback function captures the correct value of the loop variable,
and the expected output will be produced. Here is an example of how the code could be

fixed:

D Copy code

® Experimental result

value = i;
setTimeout() => : (value),
:

® Computational prediction

What enabled these advances? What are outstanding problems? How do we approach them?

Scale Brings Quality and Capabilities

Language models explaining jokes
1000

. GPT-3 (175B) 5023;'2""
% 100 Megatron-Turing NLG (530B) Input: | tried 10000 random restarts of my neural network, but |
£ was accused of overfitting. | guess no good seed goes unpunished.
g Megatron-LM (8.3B) T
i uring- ,
; 10 1.3B model: The joke is that if you try 10000 different seed choices,
e you'll eventually find one that works, but you'll be accused of
'-2 overfitting.
T 1
D
9 175B model: This joke is a play on words related to neural networks,
§° BERT-Large (340M) a type of machine learning algorithm.
100 million 1 The punchline, "I guess no good seed goes unpunished," is a play on

2018 1 i TSRS the phrase "no good deed goes unpunished." In this case, "good
seed" refers to a starting point for the random restarts, and the joke
implies that even when trying to improve the neural network's

2018 2019 2020 2021 2022 performance, the person is still accused of overfitting.

0.01

Scale is more closely tied to advances in ML than ever before

Core Challenge with Scale: Efficiency

Accuracy

Larger/slower
model

*

Is it possible to get there?

Smaller/faster
» model

Efficiency

Efficiency eases training, deployment,
and facilitates research

Write a 4000 word essay on the best ice cream flavor

11 tokens in prompt
Up to 4,000 tokens in response

This model can only process a
maximum of 4,001 tokens in a single
request, please reduce your prompt or
response length.

Learn more about pricing

Efficiency unlocks new capabilities
(e.g., long context)

Approach to Efficiency: Understanding Algorithms & Systems

Fundamental algorithms Hardware accelerators & distributed systems

Linear l

Concat

[t

Scaled Dot-Product "
X Attention

Fast matrix-vector multiply Attention mechanism Block-oriented device Asymmetric memory hierarchy

Main ldea: Hardware-aware Algorithms

|O-awareness:
reducing reads/writes to GPU memory yields significant speedup

Outer Loop
&
Ki:dxN
Copy Block to SRAM
Q:Nxd ; Outerloop ~ v.nxd
<IN\ SRAM: 19 TB/s (20 MB) R)
SRAM Y T e
VLERT T
il)\ HBM: 1.5TB/s (40 GB) 2 S . | 2
HBM 3 . Compute Block | =
‘7 E’ Copy | on SRAM | § %
WETLRUE A DRAM: 12.8 GB/s ¢ | 2 S
(CPU DRAM) (>1T8B) | 15
©
\/ :_ 'y \/

—_ —_- = = 4

Memory Hierarchy with

: : Output to HBM
Bandwidth & Memory Size sm(QK")V: Nxd

Inner Loop

FlashAttention

FlashAttention: fast and memory-efficient attention

algorithm, with no approximation

D., Fu, Ermon, Rudra, Ré, NeurlPS 2022
D., 2023

« m
O PyTorch @openAl OO Meta > ANTHROP\C

NVIDIA Microsoft

State-space expansion:

expand recurrent states in SRAM only to avoid memory cost

—_—— Selection Mechanism

A
—_— > > — —
_— 7 — —
- 7 N —— >
!
he—q B} | hy
| :
N\ J I
\\ tl | -~ t
\ J A > GPU
\ T Discretize 1\ t SRAM
Project GPU HBM

Mamba: selective state-space model that matches Transformers on

language model, with fast inference and up to 1M context

Gu*, D.*, 2023.

WA mosaic' &) sambaNovor

S Y STEMS

[I] '
-y
iy 4
HUGGING FACE waaf™?

Outlines

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce 10s
Applications: faster Transformers, better Transformers with long context

Mamba: Selective :
State-Space)

Structured State Space Models (54)
Selection Mechanism
Applications: language modeling, DNA, audio

Outlines

Attention is bottlenecked by memory reads/writes

Tiling and recomputation to reduce 10s
Applications: faster Transformers, better Transformers with long context

<
- J
Structured State Space Models (54)

Selection Mechanism
Applications: language modeling, DNA, audio

Motivation: Modeling Long Sequences

Enable
New Capabilities

NLP: Large context required to
understand books, plays,
codebases.

Close Reality Gap

Computer vision: higher
resolution can lead to better,
more robust insight.

)

\.

Ry \
p s A t

2

Open New Areas

Time series, audio, video,
medical imaging data naturally
modeled as sequences of
millions of steps.

10

Efficiency is the Bottleneck for Modeling Long Sequences with Attention

Context length: how many other Increasing context length slows down (or stops) training
elements in the sequence does

the current element interact with. GPT3 training speed

250
B Megatron-LM 2K

Bl Megatron-LM 8K

4]

v 200

al

O

™

— 150 - 142 122

©

Q

Q

Q.

U 100

(@)

<

<

l"_e 50 -

5 OOM
GPT3-1.3B GPT3-2.7B

How to efficiently scale models to longer sequences?

Background: Attention is the Heart of Transformers

Encoder

Encoder

Attention
Q K V

Encoder

Transformer Encoder

Background: Attention Mechanism

Q K
(N x d) (N x d)

Query Key

Typical sequence length N: 1K — 8K
Head dimension d: 64 — 128

S= QK" A = Softmax(5) V
(N x N) (N x N) (N x d)
— X
Similarity Attention prob Value
Score = row-wise normalized

similarity score

e°1 e>N
Softmax([sq, -, syl) = [e]
INECE D)

O = Softmax(QK'")V

Attention scales quadratically in sequence length N

(N x d)

Output

Background: Approximate Attention

/

Sparse Transformer
(Child et al. 19)

Reformer
(Kitaev et al. 20)

Routing Transformer
(Roy et al. 20)

o

S SPARSE V)/4(Q) LOWRANK

($(K)")

PANG

Linformer
(Wang et al. 20)

Linear Transformer
(Katharopoulos et al. 20)

Performer

(Choromanski et al. 20)

\

/

Approximate attention: tradeoff quality for speed fewer FLOPs

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Is there a fast, memory-efficient, and exact attention algorithm?

14

Our Observation: Attention is Bottlenecked by Memory Reads/Writes

Q K
(N x d) (N x d)

Query Key

Typical sequence length N: 1K — 8K
Head dimension d: 64-128

rS= QKTN

(N x N)

7

A = Softmax(S§)

| (N x N) |

Similarity
Score

The biggest cost is in moving the bits!

= row-wise normalized

Attention prob

similarity score

(N x d)

Value

Standard implementation requires repeated R/W
from slow GPU memory

(N x d)

Output

15

Background: GPU Compute Model & Memory Hierarchy

2. Data moved to
compute units & SRAM >
for computation

Compute Compute

SRAM SRAM
SRAM

GPU
HBM

1. Inputs start out in
HBM (GPU memory)

3. Output written /

back to HBM

>

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.

Can we exploit the memory asymmetry to get speed up?
With |0-awareness (accounting for R/W to different levels of memory)

A\ SRAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

16

https://horace.io/brrr_intro.html

How to Reduce HBM Reads/Writes: Compute by Blocks

Challenges: Approaches:

(1) Compute softmax normalization without access (1) Tiling: Restructure algorithm to load block by
to full input. block from HBM to SRAM to compute attention.
(2) Backward without the large attention matrix from (2) Recomputation: Don’t store attn. matrix

forward. from forward, recompute it in the backward.

17

Attention Computation Overview

Softmax row-wise
normalization constant

KT
S=QK'"
A = exp(S)

l = 2 exp(8);

Output

~|

Compute by blocks: easy to split Q, but how do we split K & V? 1s

Tiling — 15t Attempt: Computing Attention by Blocks

Goal:

Load each block from HBM to
SRAM & do

Softmax row-wise
normalization constant

(K(l))T (K(Z))T Example: Split K into 2 blocks

s =g (Ku))T s® = (K@)

Output
v (" aa)
— .y
A = exp(s) AP = exp(§®) - %2)
AT @

e

.

N
| — Z exp(S(l))i n Z exp(Sz)i Challenge: H?ow to compute softmax normalization with just
l_ :

L Y

19

Tiling — 2"d Attempt: Computing Attention by Blocks, with Softmax Rescaling

Goal:
Load each block from HBM to (KONT (K@NHT
SRAM & do local computation
IR S L AR
/z \ // ‘\
| | ‘.
| : !
: [|
[|
0 7 sW=Q(.®) | s®=qk®) |
: I :
[[[
\ A I
\\ __________ // \\ __________ ,/
_____ Vo v

Stored in HBM
A(l) — exp(S(l))
' Computed in SRAM

(not materialized in HBM)

’—————————~

I
I
I
I
I
I
I
I
A

() — Z exp(SD). (@) = 1D 4 z exp(S§®)).

i i

Output we want: [= z exp(S(l))i + z eXp(Sz)i
- i

l
(1) (2)
0 = - v 5 aw V@
l [
Wrong
Output denominator ®
A /* Local
(1) (1)
Ve | or = (1) V= computation
= (2) LD (1)
= 1(2)2 Rescaling to
v A®) | correct
| - V& denominator
1(2) ~

Tiling + Rescaling allows local computation in SRAM, without

writing to HBM, and get the right answer! 20

Tiling

Decomposing large softmax into smaller ones by scaling.

Keys (NxK)

Q @ tr(K)
NxN

Queries (NxK)

Animation credit: Francisco Massa

Output
(NxK)

Values
(NxK)

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to
that block.

3. Update output in HBM by scaling.

21

Recomputation (Backward Pass)

Stored in HBM

Recomputed in SRAM

(not materialized in HBM)

By storing softmax normalization from forward (size N),
quickly recompute attention in the backward from Q S=QKT
Inputs in SRAM.

Output
Attention Standard FlashAttention 1
GFLOPs 66.6 75.2 (1M13%) A=exp(S) | - v = 7V
HBM reads/writes (GB) 40.3 4.4 (, 9x)
Runtime (ms) 41.7 7.3 (4, 6x) - N
L=) exp(S);
g ZL J

FlashAttention speeds up backward pass even with increased FLOPs. N

FlashAttention: 2-4x speedup, 10-20x memory reduction

FlashAttention Speedup, A100 FlashAttention Memory Reduction

A
|
N
o
|

W
|
-
Ul
I

Speedup (X times faster)
N)

Memory Reduction (X times less)
=
o

1 - 2 o
0 - 0 -
128 256 512 1024 2048 4096 128 256 512 1024 2048 4096
Sequence Length Sequence Length
B Dropout + Masking B Dropout + Masking

i Masking Only
B No Masking, No Dropout

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length

23

GPT3: Faster Training, Longer Context, Better Model

GPT3 training speed

250
Bl Megatron-LM 2K

Bl Megatron-LM 8K

N
o
()

A

2.4x7T

150 - 142

-

o

o
1

Training speed TFLOPs/s

GPT3-1.3B

FlashAttention speeds up GPT-3 training by 2x,
increase context length by 4x, improving model quality

| I FlashAttention 8K

170

Shoeybi et al. arXiv:1909.08053 2019.

149

OOM
GPT3-2.7B

175

Model Val perplexity
on the Pile (lower better)
GPT-1.3B, 2K context 5.45
GPT-1.3B, 8K context 5.24
GPT-2.7B, 2K context 5.02
GPT-2.7B, 8K context 4.87

36

w
N

Suffix Identification Acc.
N
oo

N
~

ChapterBreak (PG19) accuracy

— GPT3-1.3B
— GPT3-2.7B

ez

256 512 1K 2K 4K 8K
Sequence Length

24

24

FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

Key IdeaS Attention fwd + bwd speed, causal mask, head dim 128 (A100 80GB SXM4)
B Pytorch

- Reduce non-matmul FLOPs 200 { = FlashAttention

- Parallelize over seglen dimension to improve .

occupancy =

99

[
o
o

- Better work partitioning between warps to
reduce communication

83

Speed (TFLOPs/s)

s 69
55

Ul
o
1

32, 32 34

I OOM
I I

Upshot: 2x faster wallclock, can train models =12 Y e ance ok 16k
with 2x context length for the same cost

28

23

25

Optimizing FlashAttention for H100 GPU

Ganesh Bikshandi and Jay Shah

New hardware features on H100:

- wgmma instruction: higher matmul
throughput

- TMA: faster loading from global memory <->
shared memory

- FP8: lower precision, higher throughput

Upshot: 1.2-2.5x speed up by using new
features

TFLOPs/s

1,000 |-

900

800

700

600

500 |

400

300

200

100

417

505

355

476

|
FP16

617

633

513

\
FP8 Hybrid

727

967

0§ HEAD64 0 HEAD128 I HEAD256

H100 80GB SXM5

Ganesh Bikshandi and Jay Shah, A Case Study in CUDA Kernel Fusion: Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUTLASS Library

Ganesh Bikshandi and Jay Shah, Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

FP8

Flash-Decoding: Faster Decoding for Long Context Inference

Tri Dao, Daniel Haziza, Francisco Massa, Grigory Sizov

Decoding IO bottleneck: all about loading KV cache as fast as possible

Values Values

Keys Keys

Queries

Queries !

it Output
Split 1/5 Split 2/5 Split 3/5 Split 4/5 Split 5/5
Previous methods: Flash-Decoding:
- Parallelizes across blocks of queries, batch - Faster loading: parallelize KV cache over seqglen dim
size, and heads only - Separate reduction step to combine results
- Does not to occupy the entire GPU during
decoding—> slow KV cache loading. Upshot: 2-8x faster end-to-end generation on

CodelLlama 34B with context 32k-100k.

27

Animation credit: Daniel Haziza

Summary — FlashAttention

FlashAttention: fast and memory-efficient algorithm for exact attention
Key algorithmic ideas: tiling, recomputation

Upshot: faster training, better models with longer sequences

Code: https://github.com/Dao-AlLab/flash-attention

28

https://github.com/HazyResearch/flash-attention

Outlines

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce 10s
Applications: faster Transformers, better Transformers with long context

Mamba: Selective :
State-Space)

Structured State Space Models (S4)

Selection Mechanism

Applications: language modeling, DNA, audio
Slides credit: Albert Gu (CMU)

29

Deep Sequence Model

-

_

D

Linear

e

Normalization

~

/

CNN (ResNet)

-

_

S

Linear

——

Normalization

/

Transformer

_

D

Linear

——

Normalization

/

SSNN

Recurrent Neural Networks (RNN)
®

%) (x) &)
Sequential
v Natural autoregressive (causal) model
X Slow training on accelerators and

poor optimization (vanishing gradients)

Attention (Transformers)

)

[Linear]

1

[Concat]
f
Scale'cal\ t?:;;iZ;OdUCt "
A—
V K Q
Dense interactions

v Strong performance, parallelizable
X Quadratic-time training, linear-time inference

(in the length of the sequence)

Selective State Spaces

A
h,_ ? N
t—1 (!) : . f l he
it \\\ Bt . J i - 5 Ct %
AN — 4\‘""_“;@5 3 Ar - >T
—— Selection Mechanism

v Efficiency: parallelizable training + fast inference
V4 Performance: matches Transformers on LM

v Long Context: improves up to million-length sequences

State Space Models (SSM)

R. E. Kalman. "A New Approach to Linear Filtering and Prediction Problems." ASME 1960

Outline

 Structured State Space Models (54)
* Selective State Space Models (Mamba)

* Applications

35

Structured State Space Models (S4)

Modeling Sequences with Structured State Spaces
Gu. PhD Dissertation.

—lw n V—) N)
A o o
h = Ah + Bx - |h=Ah + Bx ’ y =K xx
y =Ch+ Dx y =Ch+ Dx
Continuous Recurrent Convolutional
Representation Representation Representation

Deep learning model related to SSMs, RNNs, CNNs

1-D

N-D

1-D

— y(t)
™ " o A(t)

N-D

1-D

h'(t) = Ah(t) + Bxz(t)

— 'V A(t)
\/\/\f\N\AM WMWMWMWAW/\WMMW . W\M M o

1-D

N-D

|
0 2000

|
4000

|
6000

|
8000

10000

y(t)

h(t)

1-D

N-D

1-D

— y(t)
™ " o A(t)

%Tl% Sl
/\/

h = Ah + Bx
y =Ch+ Dx

Continuous
Representation

h=Ah + Bx

y =Ch+ Dx
Recurrent

Representation

SSMs: Continuous Representation

N

/\/ \\

y:]?*x

Convolutional
Representation

Operates on signals and sequences

%Tl% Sl
/\/

h = Ah + Bx
y =Ch+ Dx

Continuous
Representation

SSM: Recurrent Representation

h=Ah + Bx

y =Ch+ Dx
Recurrent

Representation

N

/\\/ \\

y:]?*x

Convolutional
Representation

Efficient autoregressive computation

Computing SSMs Recurrently

h'(t) = Ah(t) + Bxz(t)

| | | |
0 2000 4000 6000 8000

Efficient autoregressive computation of state

10000

y(t)

h(t)

x(t)

SSM: Convolutional Representation

%Tl% Sl
/\/

h = Ah + Bx
y =Ch+ Dx

Continuous
Representation

h=Ah + Bx

y =Ch+ Dx
Recurrent

Representation

N

/\\/ \\

y:]?*x

Convolutional
Representation

Efficient parallelizable computation

Computing SSMs Convolutionally

i

!

o

My

o Mo

U

i

i/

{

il

Ul

i

N

o

Output can be computed without computing state

Computing SSMs Convolutionally

y(t) = x(t)

x I (t)

Wi

W/

K

A

Wl

SSMs are equivalent to convolutions

y(t)

x(t)

*
K(t)

Computing SSMs Convolutionally

y(t) = x(t)

x I (t)

oy]

K

— —

AL

IIANAN AN A AN AN

— L

Wl

2N N\ AN N /\/\/\AI‘/\AM_

Parallelizable + nearly-linear computation

y(t)

x(t)

*
K(t)

Computing SSMs Convolutionally

y(t) = x(t)

x I (t)

gl W/

K

— ____

AL

IIANAN AN A AN AN

— L

Wl

2N N\ AN N /\/\/\AI‘/\AM_

Generalizes convolutional neural networks (CNN)

y(t)

x(t)

*
K(t)

Linear Time Invariant (LTI)

Parameters are constant (invariant) through time

h'(t) = Ah(t) + Bx(t)
y(t) = Ch(t) + Dx(t)

Can use LTI SSM to refer to any model that is a:

* Linear recurrence (e.g. LRU)
* Global convolution (e.g. Hyena)

Great for “continuous” domains (audio, images) but not for text

Outline

* Selective State Space Models (Mamba)

52

Motivation: Tradeoffs of the State

Tradeoffs of sequence models can be understood through
examining their autoregressive state

; 3 > 0 0 0 0 0 0 0 0 @9 —
uw
@ N (B O 0 0O O O 0 0O O j> -
-y —> Scaled Dot-_Product IIZ "
A O 0 0 0 O O O frenton
.............. 3 ¥
I 4 % | LI | L 1

j)) O O O O O Z/’CVCVJ/’CL Lnfar,] Lnrear.] Linfar.]

53

Motivation: Tradeoffs of the State

State = fixed-sized vector (compression)

v Efficient: Constant-time inference,
linear-time training

X Poor performance on information-dense
modalities (language)

Motivation: Tradeoffs of the State

)

[Linear]

1

[Concat]
T |

Scaled Dot-Product
Attention

N
[|
\ K Q

State = cache of entire history (no compression)

v Strong performance: Models all connections, long-
range dependencies

X Inefficient: Linear-time inference, quadratic-
time training

Motivation: Tradeoffs of the State

No state compression

Performance 1
Efficiency |/

?TE Sl
/v

h = Ah + Bx
y =Ch+ Dx

Continuous
Representation

Strong state compression

Efficiency 1
Performance J,

Selection Mechanism

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y : (B,L,D) Output: y : (B,L,D)

1: A : (D,N) « Parameter 1: A : (D,N) « Parameter

2
3
4
5
6

: B : (D,N) « Parameter

. C : (D,N) « Parameter

: A : (D) « 7, (Parameter)

. A, B : (D,N) « discretize(A, A, B)
. y « SSM(A, B,C)(x)

. return y

> Represents structured N X N matrix
: B (B,L,N) « s3(x)
: C : (B,L,N) « s-(x)
: A . (B,L,D) « Tt (Parameter+s,(x))
: Z,E : (B,L,D,N) « discretize(A, A, B)
: ¥y« SSM(A, B,C)(x)
> Time-varying: recurrence (scan) only

> Represents structured N X N matrix

AN U B W

> Time-invariant: recurrence or convolution
7: return y

S4 with selectivity and computed with a scan

57

Selection Mechanism

A
——# 7~ [S d ——->
—— e > ~ B ——>
— 4 S -
1L L
h | h h
t—1) i { t
| | —
N\ I
xe [\ g| — | — | 1w
\ t , | _ N t
_ \ : _
\ J A, > GPU
] N Z Discretize t vy — SRAM
T ‘Project: T T

GPU HBM

Same 1D — 1D map, but parameters depend on input

Selection Mechanism

A
—— 4 7~ [S d —-—->
—— 3 e > ~ A ——>
— = 7 > S M ——>
__E =) Lf—__)
hy
N __

hS

i

GPU

SRAM

&
[(TTTT}—
|<_)

\
-
([T

GPU HBM

But wait — LTI models were necessary for efficiency

Can't compute large state, must use convolution

Hardware-aware State Expansion

SRAM

GPU HBM

A
——4d -~ S| S d ——->
- 7 N m
— — a S M = —>
L L
T
he_ |) h
t—1 -[}_ | _[_L t
N\ : y
X — —> t
T \\ Bt Y, : _ N Ct T
: : GPU

Idea: Only materialize the expanded state in more
efficient levels of the memory hierarchy

Mamba: A Simplified SSM Architecture

H3 ®

Outline

* Structured State Space Models (S4)
* Selective State Space Models (Mamba)

* Applications

62

Language Modeling — Scaling Laws

Scaling Laws on The Pile (Sequence Length|8192

2x 107

Hyena

1)\ RWKYV

S Transformer
g —e— RetNet

2 —— H3++
: 1 Transformer++
et —

"¢ 10 == [Mamba

Q

Q.

p

Q

a

6 x 100 1 1 I 1 1 1 1 1 1 1 1 I
1 019 1 020
FLOPs (log scale)

Transformer: GPT-3 model + training recipe

Language Modeling — Scaling Laws

Scaling Laws on The Pile (Sequence Length 8192)

2x 107
Hyena

1)\ RWKV
8 Transformer
g —e— RetNet
2 —— H3++
j -
> Transformer++
S 107 -
'5 == [Vlamba
a
| -
Q
(a

6 x 10°

107 | o
FLOPs (log scale)

H3, Hyena, RWKYV, RetNet: Recent SSMs for LM

Language Modeling — Scaling Laws

Scaling Laws on The Pile (Sequence Length 8192)

2x 107
Hyena

’q-)\ RWKV
8 Transformer
@ —e— RetNet
O)
2 —— H3++
: Transformer++
S 107 -
'5 == [Vlamba
a
| -
Q
(a

6 x 10°

107 | o
FLOPs (log scale)

Transformer++: Llama model + training recipe

Language Modeling — Scaling Laws

Scaling Laws on The Pile (Sequence Length 8192)

2x 107
Hyena

’q-)\ RWKV
8 Transformer
@ —e— RetNet
O)
2 —— H3++
; Transformer++
S 107 -
'5 == [Vlamba
a
| -
Q
(a

6 x 10°

107 | o
FLOPs (log scale)

Mamba: First attention-free model to compete with
strong modern Transformer models

Language Modeling — Zero-shot Evals

MODEL TOKEN. PILE LAMBADA LAMBADA HELLASWAG PIQA ARC-E ARC-C WINOGRANDE AVERAGE
PPL| PPL| Acc T Acc T AccT AcctT AcctT Acct Acc T
Hybrid H3-130M GPT2 — 89.48 25.77 31.7 64.2 44.4 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 43.2 24.1 51.9 40.6
Mamba-130M NeoX 10.56 16.07 44.3 35.3 64.5 48.0 24.3 51.9 44.7
Hybrid H3-360M GPT2 — 12.58 48.0 41.5 68.1 51.4 24.7 54.1 48.0
Pythia-410M NeoX 9.95 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0
Pythia-1B NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Mamba-790M NeoX 7.33 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 — 7.50 57.2 48.9 71.1 56.2 25.9 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT — 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 52.5 72.4 60.5 29.4 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 — 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 — 7.92 55.7 59.7 73.3 65.6 32.3 61.4 58.0
OPT-2.7B OPT — 5.12 63.6 60.6 74.8 60.8 31.3 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 59.3 74.0 64.1 32.9 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3
GPT-J-6B GPT2 - 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT — 4.25 67.7 67.2 76.3 65.6 34.9 65.5 62.9
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 61.7
RWKV-7.4B NeoX 6.31 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5

Mamba matches/beats Transformers of similar size

DNA Pretraining

a1 Task
T A
G C Next-token (base pair)
G C— pretraining for DNA
2 f Challenge

Can have extremely
A T

long-range interactions

Towards genomics foundation models

69

DNA Scaling Laws — Context Length

Scaling Laws - Sequence Length (HG38)

3.00 -| === HyenaDNA 1.4M
Mamba 1.4M
2.95 Mamba 7M

2.80 —

Perplexity

| | | | | | L I I | | | | | | LI I B | | | | | 1
10° 104 10° 106
Sequence Length

Unlike LTI — better scaling with context length

70

Audio Modeling — Pretraining

Scaling Laws - Sequence Length (YouTubeMix)

1.475
—e— S4+FFN

1.450 Mamba

o 1.425 -
=7
>
M 1400 -
| -
a
., 1.375 -
2
M 1.350 -

1.325 -

10300 1 1] 1 1 1 1 1 1 1] 1 1 1 1 1 1 1
10* 10° 10°

Sequence Length

Improved perplexity up to 1M sequences (1min audio)

71

Summary — Mamba

Match or beat strongest Transformer architecture on language
Key algorithmic ideas: selection mechanism, hardware-aware state expansion

Upshot: better models with linear (instead of quadratic) scaling in sequence length

Code: https://github.com/state-spaces/mamba/

73

https://github.com/state-spaces/mamba/

Implications for Foundation Models

Pre-training
(statistical
modeling)

Prompting In-Context RLHF
Learning
Instruction Cross-modal

Tuning transfer

LLMs/FMs have many
mysterious properties and
affordances

...but what is an LLM?

Extensive work (and speculation) on
how statistical modeling assumptions
might lead to downstream properties!

75

Implications for Foundation Models

rw—— LLMs/FMs have many
e | et mysterious properties and
' Transformer |
| (attention) | affordances

...but what is an LLM?

prompting | In-Context | RUHE What if the architecture is the
earmine root of these phenomena?

Instruction Cross-modal
Tuning transfer

Implications for Foundation Models

Pre-training
(statistical
______________ modeling)

Prompting? | In-Context RLHF?
Learning?
Instruction Cross-modal

Tuning? transfer?

LLMs/FMs have many
mysterious properties and
affordances

...but what is an LLM?

What if the architecture is the
root of these phenomena?

77

Implications for Foundation Models

Pre-training
(statistical
______________ modeling)

Prompting? | In-Context RLHF?
Learning?

Instruction Cross-modal
Tuning? transfer?

Scenario 1: SSMs work as well as
Transformer downstream

V" The next dominant architecture?

Scenario 2: SSMs are missing some
downstream capabilities

v Deeper understanding of FMs

78

