
Hardware-aware Algorithms
for Sequence Modeling

Tri Dao
https://tridao.me

https://tridao.me

Generate Art
(Stable Diffusion – Stability.AI)

Machine Learning Has Made Exciting Progress

Fix Bugs
(ChatGPT/GPT4 - OpenAI)

Design Drugs
(AlphaFold – DeepMind)

What enabled these advances? What are outstanding problems? How do we approach them?
2

c

Scale Brings Quality and Capabilities

100 million

2018

500 billion
2022

Scale is more closely tied to advances in ML than ever before
3

Input: I tried 10000 random restarts of my neural network, but I
was accused of overfitting. I guess no good seed goes unpunished.

1.3B model: The joke is that if you try 10000 different seed choices,
you'll eventually find one that works, but you'll be accused of
overfitting.

175B model: This joke is a play on words related to neural networks,
a type of machine learning algorithm.
The punchline, "I guess no good seed goes unpunished," is a play on
the phrase "no good deed goes unpunished." In this case, "good
seed" refers to a starting point for the random restarts, and the joke
implies that even when trying to improve the neural network's
performance, the person is still accused of overfitting.

Language models explaining jokes

Core Challenge with Scale: Efficiency

Smaller/faster
model

Is it possible to get there?

Efficiency

Ac
cu

ra
cy

Larger/slower
model

Efficiency unlocks new capabilities
(e.g., long context)

4

Efficiency eases training, deployment,
and facilitates research

Approach to Efficiency: Understanding Algorithms & Systems

Fundamental algorithms Hardware accelerators & distributed systems

x

5

Fast matrix-vector multiply Attention mechanism Block-oriented device Asymmetric memory hierarchy

Main Idea: Hardware-aware Algorithms
IO-awareness:
reducing reads/writes to GPU memory yields significant speedup

FlashAttention: fast and memory-efficient attention
algorithm, with no approximation

6

D., Fu, Ermon, Rudra, Ré, NeurIPS 2022
D., 2023

State-space expansion:
expand recurrent states in SRAM only to avoid memory cost

Project

Discretize

!!

ℎ!"# ℎ!
"!

#

$!%!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Mamba: selective state-space model that matches Transformers on
language model, with fast inference and up to 1M context

Gu*, D.*, 2023.

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio

Outlines

8

FlashAttention

Mamba: Selective
State-Space

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Outlines

9

FlashAttention

Mamba: Selective
State-Space

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio

Motivation: Modeling Long Sequences

NLP: Large context required to
understand books, plays,

codebases.

Computer vision: higher
resolution can lead to better,

more robust insight.

Time series, audio, video,
medical imaging data naturally

modeled as sequences of
millions of steps.

10

Enable
New Capabilities

Close Reality Gap Open New Areas

Efficiency is the Bottleneck for Modeling Long Sequences with Attention

How to efficiently scale models to longer sequences?
11

Context length: how many other
elements in the sequence does
the current element interact with.

2x↓

Increasing context length slows down (or stops) training

Background: Attention is the Heart of Transformers

12

Background: Attention Mechanism

O = Softmax(QKT)V

13

Q
(N x d)

K
(N x d)

x

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

Softmax 𝑠!, ⋯ , 𝑠" =
𝑒#!

∑$ 𝑒#"
, ⋯ ,

𝑒##

∑$ 𝑒#"

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 𝑄 𝐾!
(N x N)

A = Softmax(𝑆)
(N x N)

Attention scales quadratically in sequence length N

Is there a fast, memory-efficient, and exact attention algorithm?
14

Background: Approximate Attention

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Approximate attention: tradeoff quality for speedApproximate attention: tradeoff quality for speed fewer FLOPs

Our Observation: Attention is Bottlenecked by Memory Reads/Writes

15

Q
(N x d)

K
(N x d)

S = 𝑄 𝐾!
(N x N)

x

A = Softmax(𝑆)
(N x N)

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64-128

The biggest cost is in moving the bits!
Standard implementation requires repeated R/W

from slow GPU memory

Background: GPU Compute Model & Memory Hierarchy

Can we exploit the memory asymmetry to get speed up?
With IO-awareness (accounting for R/W to different levels of memory)

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.

16

1. Inputs start out in
HBM (GPU memory)

2. Data moved to
compute units & SRAM

for computation

3. Output written
back to HBM

https://horace.io/brrr_intro.html

How to Reduce HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling: Restructure algorithm to load block by
block from HBM to SRAM to compute attention.

(2) Recomputation: Don’t store attn. matrix
from forward, recompute it in the backward.

Challenges:

(1) Compute softmax normalization without access
to full input.

(2) Backward without the large attention matrix from
forward.

17

Attention Computation Overview

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺) 𝑨
𝒍 , 𝑽

𝒍 =.
𝒊

exp 𝑺 𝒊

𝑸

𝑲𝑻

𝑽, =

Output

Softmax row-wise
normalization constant 18Compute by blocks: easy to split Q, but how do we split K & V?

𝑨(𝟏)

𝒍
, 𝑽 𝟏

+
𝑨(𝟐)

𝒍
, 𝑽(𝟐)

Tiling – 1st Attempt: Computing Attention by Blocks

𝑸

𝑽(𝟏)

, =

Output

(𝑲 𝟏)𝑻 (𝑲 𝟐)𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

Challenge: How to compute softmax normalization with just
local results?

𝒍 =.
𝒊

exp 𝑺 𝟏
𝒊 +.

𝒊

exp 𝑺𝟐 𝒊

Example: Split K into 2 blocks

Softmax row-wise
normalization constant

Goal:
Load each block from HBM to
SRAM & do local computation

19

𝑶(𝟐) =
𝒍(𝟏)

𝒍(𝟐)
𝑶(𝟏)

+
𝑨(𝟐)

𝒍(𝟐)
, 𝑽(𝟐)

Tiling – 2nd Attempt: Computing Attention by Blocks, with Softmax Rescaling

𝑸

𝑽(𝟏)

, =

Output

(𝑲 𝟏)𝑻 (𝑲 𝟐)𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

𝒍(𝟏) =.
𝒊

exp 𝑺 𝟏
𝒊

𝒍(𝟐) = 𝒍(𝟏) + .
𝒊

exp 𝑺 𝟐
𝒊

𝑶(𝟏) =
𝑨(𝟏)

𝒍(𝟏)
, 𝑽(𝟏)

Local
computation

Tiling + Rescaling allows local computation in SRAM, without
writing to HBM, and get the right answer!

Stored in HBM

Computed in SRAM
(not materialized in HBM)

20

Goal:
Load each block from HBM to
SRAM & do local computation

Wrong
denominator L

𝒍 =.
𝒊

exp 𝑺 𝟏
𝒊 +.

𝒊

exp 𝑺𝟐 𝒊
Output we want:

𝑶 =
𝑨(𝟏)

𝒍 , 𝑽 𝟏 +
𝑨(𝟐)

𝒍 , 𝑽(𝟐)

Rescaling to
correct

denominator

Tiling
Decomposing large softmax into smaller ones by scaling.

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to
that block.

3. Update output in HBM by scaling.

Animation credit: Francisco Massa
21

Recomputation (Backward Pass)

By storing softmax normalization from forward (size N),
quickly recompute attention in the backward from
inputs in SRAM.

FlashAttention speeds up backward pass even with increased FLOPs.

Attention Standard FlashAttention

GFLOPs 66.6 75.2 (↑13%)

HBM reads/writes (GB) 40.3 4.4 (↓9x)

Runtime (ms) 41.7 7.3 (↓6x)

22

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺)
𝑨
𝒍
, 𝑽

𝑸

𝑲𝑻

𝑽, =

Output

Stored in HBM

Recomputed in SRAM
(not materialized in HBM)

𝒍 =.
𝒊

exp 𝑺 𝒊

FlashAttention: 2-4x speedup, 10-20x memory reduction

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length 23

GPT3: Faster Training, Longer Context, Better Model

FlashAttention speeds up GPT-3 training by 2x,
increase context length by 4x, improving model quality

Shoeybi et al. arXiv:1909.08053 2019. 24

Model Val perplexity
on the Pile (lower better)

GPT-1.3B, 2K context 5.45

GPT-1.3B, 8K context 5.24

GPT-2.7B, 2K context 5.02

GPT-2.7B, 8K context 4.87

2x↓

2.4x↑

24

Summary
FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

25

Key ideas:
- Reduce non-matmul FLOPs
- Parallelize over seqlen dimension to improve
occupancy
- Better work partitioning between warps to
reduce communication

Upshot: 2x faster wallclock, can train models
with 2x context length for the same cost

26

Optimizing FlashAttention for H100 GPU

New hardware features on H100:
- wgmma instruction: higher matmul
throughput
- TMA: faster loading from global memory <->
shared memory
- FP8: lower precision, higher throughput

Upshot: 1.2-2.5x speed up by using new
features

Ganesh Bikshandi and Jay Shah

H100 80GB SXM5

Ganesh Bikshandi and Jay Shah, A Case Study in CUDA Kernel Fusion: Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUTLASS Library
Ganesh Bikshandi and Jay Shah, Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2

Summary
Flash-Decoding: Faster Decoding for Long Context Inference

27

Flash-Decoding:
- Faster loading: parallelize KV cache over seqlen dim
- Separate reduction step to combine results

Upshot: 2-8x faster end-to-end generation on
CodeLlama 34B with context 32k-100k.

Previous methods:
- Parallelizes across blocks of queries, batch
size, and heads only
- Does not to occupy the entire GPU during
decodingà slow KV cache loading.

Tri Dao, Daniel Haziza, Francisco Massa, Grigory Sizov

Animation credit: Daniel Haziza

Decoding IO bottleneck: all about loading KV cache as fast as possible

Summary

Code: https://github.com/Dao-AILab/flash-attention

FlashAttention: fast and memory-efficient algorithm for exact attention

Key algorithmic ideas: tiling, recomputation

Upshot: faster training, better models with longer sequences

Summary – FlashAttention

28

https://github.com/HazyResearch/flash-attention

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Outlines

29

FlashAttention

Mamba: Selective
State-Space

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio
Slides credit: Albert Gu (CMU)

Deep Sequence Model

Normalization

Linear

SSM

Normalization

Linear

Convolution

Normalization

Linear

Attention

CNN (ResNet) Transformer SSNN

Recurrent Neural Networks (RNN)

Natural autoregressive (causal) model✓

✗ Slow training on accelerators and
poor optimization (vanishing gradients)

Sequential

Attention (Transformers)

Strong performance, parallelizable✓

✗ Quadratic-time training, linear-time inference
(in the length of the sequence)

Dense interactions

Selective State Spaces

Performance: matches Transformers on LM✓

Project

Discretize

!!

ℎ!"# ℎ!
"!

#

$!%!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Efficiency: parallelizable training + fast inference✓

Long Context: improves up to million-length sequences✓

ℎ𝑥 𝑦

𝐴

State Space Models (SSM)

R. E. Kalman. "A New Approach to Linear Filtering and Prediction Problems." ASME 1960

<latexit sha1_base64="wnrw4p+iRWfSlT5OFI7I3O0Aecg=">AAACpXicjVHbTttAEF0bSsHcUnjsy4oIQVUU2VWhfUGCwENfkACRgBRH0Xo9SVbZta3dMSKy/C/9rf4E39C1iVQuRTDSSEdzzpwZzUSZFAZ9/4/jzs1/WPi4uOQtr6yurTc+bXRNmmsOHZ7KVN9EzIAUCXRQoISbTANTkYTraHJS8de3oI1IkyucZtBXbJSIoeAMbWnQ+D3e2cUv9JCGCHdY+xVtLfjkEuKyCCNVHJclHVear69r2lZzV2nC0Ju+4XfyDr/Tf36DRtNv+XXQlyCYgSaZxfmgcR/GKc8VJMglM6YX+Bn2C6ZRcAmlF+YGMsYnbAQ9CxOmwOzFtyIzNewX9UIl3bZkTIeptpkgrauPmwumjJmqyCoVw7F5zlXF/3G9HIc/+4VIshwh4Q+DhrmkmNLqQzQWGjjKqQWMa2HXpnzMNONo/+g9GROp0rMHCp6f4yXofmsFB639i+/No/bsVIvkM9kiuyQgP8gR+UXOSYdwZ8HZc/adA3fHPXOv3O6D1HVmPZvkSbiDv4u0zzo=</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications

35

Structured State Space Models (S4)

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional
Representation

Deep learning model related to SSMs, RNNs, CNNs

Modeling Sequences with Structured State Spaces
Gu. PhD Dissertation.

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk=">AAAC8HicjZLNbtNAEMfXBkprShvg2MuKKKIIFNmIrwtSSXrg2CLSVoqjaL2eNKvs2tbuuNSyLMFbcENceaM+QyWegbUbhaYF0ZFW+mvmNx87u1EmhUHfP3PcW7fvrNxdXfPurd/f2Gw9eHhg0lxzGPBUpvooYgakSGCAAiUcZRqYiiQcRrN+HT88AW1EmnzCIoORYseJmAjO0LrGrfPO9Mk2PqXvaIhwik3BsqcFn32EuCrDSJXvq4pOa+bZv5meZU5rJgy9TvGfgv0bFNy9VHAxYTPMIrVpu4CKP0x/idldMONW2+/6jdHrIpiLNpnb3rj1K4xTnitIkEtmzDDwMxyVTKPgEiovzA1kjM/YMQytTJgC8zw+EZlp5KhsblbRjg3GdJJqexKkjfdycsmUMYWKLKkYTs3VWO38W2yY4+TtqBRJliMk/KLRJJcUU1o/No2FBo6ysIJxLezYlE+ZZhztl/CW2kSq8uyCgqvruC4OXnSD191X+y/bO735qlbJFnlMtklA3pAd8oHskQHhzr7z2fnifHW1+8397v64QF1nnvOILJn78zdNiueC</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk=">AAAC8HicjZLNbtNAEMfXBkprShvg2MuKKKIIFNmIrwtSSXrg2CLSVoqjaL2eNKvs2tbuuNSyLMFbcENceaM+QyWegbUbhaYF0ZFW+mvmNx87u1EmhUHfP3PcW7fvrNxdXfPurd/f2Gw9eHhg0lxzGPBUpvooYgakSGCAAiUcZRqYiiQcRrN+HT88AW1EmnzCIoORYseJmAjO0LrGrfPO9Mk2PqXvaIhwik3BsqcFn32EuCrDSJXvq4pOa+bZv5meZU5rJgy9TvGfgv0bFNy9VHAxYTPMIrVpu4CKP0x/idldMONW2+/6jdHrIpiLNpnb3rj1K4xTnitIkEtmzDDwMxyVTKPgEiovzA1kjM/YMQytTJgC8zw+EZlp5KhsblbRjg3GdJJqexKkjfdycsmUMYWKLKkYTs3VWO38W2yY4+TtqBRJliMk/KLRJJcUU1o/No2FBo6ysIJxLezYlE+ZZhztl/CW2kSq8uyCgqvruC4OXnSD191X+y/bO735qlbJFnlMtklA3pAd8oHskQHhzr7z2fnifHW1+8397v64QF1nnvOILJn78zdNiueC</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk=">AAAC8HicjZLNbtNAEMfXBkprShvg2MuKKKIIFNmIrwtSSXrg2CLSVoqjaL2eNKvs2tbuuNSyLMFbcENceaM+QyWegbUbhaYF0ZFW+mvmNx87u1EmhUHfP3PcW7fvrNxdXfPurd/f2Gw9eHhg0lxzGPBUpvooYgakSGCAAiUcZRqYiiQcRrN+HT88AW1EmnzCIoORYseJmAjO0LrGrfPO9Mk2PqXvaIhwik3BsqcFn32EuCrDSJXvq4pOa+bZv5meZU5rJgy9TvGfgv0bFNy9VHAxYTPMIrVpu4CKP0x/idldMONW2+/6jdHrIpiLNpnb3rj1K4xTnitIkEtmzDDwMxyVTKPgEiovzA1kjM/YMQytTJgC8zw+EZlp5KhsblbRjg3GdJJqexKkjfdycsmUMYWKLKkYTs3VWO38W2yY4+TtqBRJliMk/KLRJJcUU1o/No2FBo6ysIJxLezYlE+ZZhztl/CW2kSq8uyCgqvruC4OXnSD191X+y/bO735qlbJFnlMtklA3pAd8oHskQHhzr7z2fnifHW1+8397v64QF1nnvOILJn78zdNiueC</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk=">AAAC8HicjZLNbtNAEMfXBkprShvg2MuKKKIIFNmIrwtSSXrg2CLSVoqjaL2eNKvs2tbuuNSyLMFbcENceaM+QyWegbUbhaYF0ZFW+mvmNx87u1EmhUHfP3PcW7fvrNxdXfPurd/f2Gw9eHhg0lxzGPBUpvooYgakSGCAAiUcZRqYiiQcRrN+HT88AW1EmnzCIoORYseJmAjO0LrGrfPO9Mk2PqXvaIhwik3BsqcFn32EuCrDSJXvq4pOa+bZv5meZU5rJgy9TvGfgv0bFNy9VHAxYTPMIrVpu4CKP0x/idldMONW2+/6jdHrIpiLNpnb3rj1K4xTnitIkEtmzDDwMxyVTKPgEiovzA1kjM/YMQytTJgC8zw+EZlp5KhsblbRjg3GdJJqexKkjfdycsmUMYWKLKkYTs3VWO38W2yY4+TtqBRJliMk/KLRJJcUU1o/No2FBo6ysIJxLezYlE+ZZhztl/CW2kSq8uyCgqvruC4OXnSD191X+y/bO735qlbJFnlMtklA3pAd8oHskQHhzr7z2fnifHW1+8397v64QF1nnvOILJn78zdNiueC</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

SSMs: Continuous Representation

Operates on signals and sequences

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional
Representation

SSM: Recurrent Representation

Efficient autoregressive computation

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional
Representation

Computing SSMs Recurrently

Efficient autoregressive computation of state

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

<latexit sha1_base64="LNzaz8OqkuNHz2nYhADHOBJOScE=">AAACS3icbVDLSgMxFM3UV62vqks3wSIqSpkRXxvBB4hLBatCW0omvW2DycyQ3JGWYf7IX3HjTvQb3LgTF2bGLnwdCJycc18cP5LCoOs+OYWR0bHxieJkaWp6ZnauPL9wZcJYc6jxUIb6xmcGpAighgIl3EQamPIlXPu3J5l/fQfaiDC4xEEETcW6gegIztBKrfJpA6GP+ZzElzGkSS9dXcN1ekAbvkqOUvpPQeZv5P5xSvvZr1WuuFU3B/1LvCGpkCHOW+XXRjvksYIAuWTG1D03wmbCNAouIS01YgMR47esC3VLA6bAbLbvRGRy2kzyi1K6Ys027YTavgBprn5vTpgyZqB8W6kY9sxvLxP/8+oxdvabiQiiGCHgX4s6saQY0ixH2hYaOMqBJYxrYc+mvMc042jTLv1Y46u0ZAPyfsfxl1xtVb3d6s7FduXweBhVkSyRZbJGPLJHDskZOSc1wsk9eSTP5MV5cN6cd+fjq7TgDHsWyQ8Uxj4BjemzTw==</latexit>

h0(t) = Ah(t) +Bx(t)

SSM: Convolutional Representation

Efficient parallelizable computation

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional
Representation

Computing SSMs Convolutionally

Output can be computed without computing state

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

SSMs are equivalent to convolutions

Computing SSMs Convolutionally

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o=">AAACSHicbVDLSsNAFJ3Ud31VXboZLIKClER8bQTRhYILH1gV2lImk9s6dDIJMzfFEvJB/oobt/oT4k7cOYld+LowzOGccx8cP5bCoOu+OKWR0bHxicmp8vTM7Nx8ZWHx2kSJ5lDnkYz0rc8MSKGgjgIl3MYaWOhLuPF7R7l+0wdtRKSucBBDK2RdJTqCM7RUu3LURLjHYk56qAXvXUKQpYNsDdfpPr3PvyYzSL/ZzqTow7EGUFl6mhvblapbc4uif4E3BFUyrPN25bUZRDwJQSGXzJiG58bYSplGwSVk5WZiIGa8x7rQsFCxEMxG0BexKWArLQ7J6KoVA9qJtH0KacF+b05ZaMwg9K0zZHhnfms5+Z/WSLCz10qFihMExb8WdRJJMaJ5iDQQGjjKgQWMa2HPpvyOacbRRl3+scYPs7INyPsdx19wvVnzdmrbF1vVg8NhVJNkmayQNeKRXXJATsg5qRNOHsgTeSYvzqPz5rw7H1/WkjPsWSI/qlT6BGawsvQ=</latexit>

y(t) = x(t) ⇤K(t)

Computing SSMs Convolutionally

Parallelizable + nearly-linear computation

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o=">AAACSHicbVDLSsNAFJ3Ud31VXboZLIKClER8bQTRhYILH1gV2lImk9s6dDIJMzfFEvJB/oobt/oT4k7cOYld+LowzOGccx8cP5bCoOu+OKWR0bHxicmp8vTM7Nx8ZWHx2kSJ5lDnkYz0rc8MSKGgjgIl3MYaWOhLuPF7R7l+0wdtRKSucBBDK2RdJTqCM7RUu3LURLjHYk56qAXvXUKQpYNsDdfpPr3PvyYzSL/ZzqTow7EGUFl6mhvblapbc4uif4E3BFUyrPN25bUZRDwJQSGXzJiG58bYSplGwSVk5WZiIGa8x7rQsFCxEMxG0BexKWArLQ7J6KoVA9qJtH0KacF+b05ZaMwg9K0zZHhnfms5+Z/WSLCz10qFihMExb8WdRJJMaJ5iDQQGjjKgQWMa2HPpvyOacbRRl3+scYPs7INyPsdx19wvVnzdmrbF1vVg8NhVJNkmayQNeKRXXJATsg5qRNOHsgTeSYvzqPz5rw7H1/WkjPsWSI/qlT6BGawsvQ=</latexit>

y(t) = x(t) ⇤K(t)

Computing SSMs Convolutionally

Generalizes convolutional neural networks (CNN)

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o=">AAACSHicbVDLSsNAFJ3Ud31VXboZLIKClER8bQTRhYILH1gV2lImk9s6dDIJMzfFEvJB/oobt/oT4k7cOYld+LowzOGccx8cP5bCoOu+OKWR0bHxicmp8vTM7Nx8ZWHx2kSJ5lDnkYz0rc8MSKGgjgIl3MYaWOhLuPF7R7l+0wdtRKSucBBDK2RdJTqCM7RUu3LURLjHYk56qAXvXUKQpYNsDdfpPr3PvyYzSL/ZzqTow7EGUFl6mhvblapbc4uif4E3BFUyrPN25bUZRDwJQSGXzJiG58bYSplGwSVk5WZiIGa8x7rQsFCxEMxG0BexKWArLQ7J6KoVA9qJtH0KacF+b05ZaMwg9K0zZHhnfms5+Z/WSLCz10qFihMExb8WdRJJMaJ5iDQQGjjKgQWMa2HPpvyOacbRRl3+scYPs7INyPsdx19wvVnzdmrbF1vVg8NhVJNkmayQNeKRXXJATsg5qRNOHsgTeSYvzqPz5rw7H1/WkjPsWSI/qlT6BGawsvQ=</latexit>

y(t) = x(t) ⇤K(t)

Linear Time Invariant (LTI)

<latexit sha1_base64="wnrw4p+iRWfSlT5OFI7I3O0Aecg=">AAACpXicjVHbTttAEF0bSsHcUnjsy4oIQVUU2VWhfUGCwENfkACRgBRH0Xo9SVbZta3dMSKy/C/9rf4E39C1iVQuRTDSSEdzzpwZzUSZFAZ9/4/jzs1/WPi4uOQtr6yurTc+bXRNmmsOHZ7KVN9EzIAUCXRQoISbTANTkYTraHJS8de3oI1IkyucZtBXbJSIoeAMbWnQ+D3e2cUv9JCGCHdY+xVtLfjkEuKyCCNVHJclHVear69r2lZzV2nC0Ju+4XfyDr/Tf36DRtNv+XXQlyCYgSaZxfmgcR/GKc8VJMglM6YX+Bn2C6ZRcAmlF+YGMsYnbAQ9CxOmwOzFtyIzNewX9UIl3bZkTIeptpkgrauPmwumjJmqyCoVw7F5zlXF/3G9HIc/+4VIshwh4Q+DhrmkmNLqQzQWGjjKqQWMa2HXpnzMNONo/+g9GROp0rMHCp6f4yXofmsFB639i+/No/bsVIvkM9kiuyQgP8gR+UXOSYdwZ8HZc/adA3fHPXOv3O6D1HVmPZvkSbiDv4u0zzo=</latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

Parameters are constant (invariant) through time

• Linear recurrence (e.g. LRU)
• Global convolution (e.g. Hyena)

Can use LTI SSM to refer to any model that is a:

Great for “continuous” domains (audio, images) but not for text

Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications

52

Motivation: Tradeoffs of the State

53

Tradeoffs of sequence models can be understood through
examining their autoregressive state

Neural ODEsRNN Convolution Attention

Motivation: Tradeoffs of the State

Efficient: Constant-time inference,
linear-time training

✓

✗ Poor performance on information-dense
modalities (language)

State = fixed-sized vector (compression)

Motivation: Tradeoffs of the State

✓

✗

State = cache of entire history (no compression)

Strong performance: Models all connections, long-
range dependencies

Inefficient: Linear-time inference, quadratic-
time training

Motivation: Tradeoffs of the State

No state compression

Performance ↑
Efficiency ↓

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous
Representation

ℎ𝑥 𝑦
𝐴

Strong state compression

Efficiency ↑
Performance ↓

Selection Mechanism

57

S4 with selectivity and computed with a scan

Selection Mechanism

Project

Discretize

!!

ℎ!"# ℎ!
"!

#

$!%!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Same 1D ⟶ 1D map, but parameters depend on input

Selection Mechanism

Project

Discretize

!!

ℎ!"# ℎ!
"!

#

$!%!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

But wait – LTI models were necessary for efficiency
Can't compute large state, must use convolution

Hardware-aware State Expansion

Idea: Only materialize the expanded state in more
efficient levels of the memory hierarchy

Project

Discretize

!!

ℎ!"# ℎ!
"!

#

$!%!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Mamba: A Simplified SSM Architecture

61

H3 Gated MLP Mamba

Linear
projection

Sequence
transformation

Nonlinearity
(activation or
multiplication)

XX X

!

X
Conv

SSM

X !!

Conv

SSM

⨂

Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications

62

Language Modeling – Scaling Laws

Transformer: GPT-3 model + training recipe

Language Modeling – Scaling Laws

H3, Hyena, RWKV, RetNet: Recent SSMs for LM

Language Modeling – Scaling Laws

Transformer++: Llama model + training recipe

Language Modeling – Scaling Laws

Mamba: First attention-free model to compete with
strong modern Transformer models

Language Modeling – Zero-shot Evals

68Mamba matches/beats Transformers of similar size

DNA Pretraining

69

Can have extremely
long-range interactions

Towards genomics foundation models

Next-token (base pair)
pretraining for DNA

Task

Challenge

DNA Scaling Laws – Context Length

70

Unlike LTI – better scaling with context length

Audio Modeling – Pretraining

71

Improved perplexity up to 1M sequences (1min audio)

Summary

Match or beat strongest Transformer architecture on language

Key algorithmic ideas: selection mechanism, hardware-aware state expansion

Upshot: better models with linear (instead of quadratic) scaling in sequence length

Summary – Mamba

73

Code: https://github.com/state-spaces/mamba/

https://github.com/state-spaces/mamba/

Implications for Foundation Models

75

LLM

Prompting In-Context
Learning

RLHF

Pre-training
(statistical
modeling)

Instruction
Tuning

Cross-modal
transfer

Extensive work (and speculation) on
how statistical modeling assumptions
might lead to downstream properties!

...but what is an LLM?

LLMs/FMs have many
mysterious properties and

affordances

Implications for Foundation Models

76

LLM

Prompting In-Context
Learning

RLHF

Pre-training
(statistical
modeling)

Transformer
(attention)

Instruction
Tuning

Cross-modal
transfer

What if the architecture is the
root of these phenomena?

...but what is an LLM?

LLMs/FMs have many
mysterious properties and

affordances

Implications for Foundation Models

77

Prompting? In-Context
Learning?

RLHF?

Pre-training
(statistical
modeling)

State Space
Model

Instruction
Tuning?

Cross-modal
transfer?

What if the architecture is the
root of these phenomena?

...but what is an LLM?

LLMs/FMs have many
mysterious properties and

affordances

LLM

Implications for Foundation Models

78

Prompting? In-Context
Learning?

RLHF?

Pre-training
(statistical
modeling)

State Space
Model

Instruction
Tuning?

Cross-modal
transfer? Deeper understanding of FMs✓

Scenario 1: SSMs work as well as
Transformer downstream

The next dominant architecture?✓

Scenario 2: SSMs are missing some
downstream capabilities

LLM

