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Generate Art
(Stable Diffusion – Stability.AI)

Machine Learning Has Made Exciting Progress

Fix Bugs 
(ChatGPT/GPT4 - OpenAI)

Design Drugs
(AlphaFold – DeepMind)

What enabled these advances? What are outstanding problems? How do we approach them?
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c

Scale Brings Quality and Capabilities

100 million

2018

500 billion
2022

Scale is more closely tied to advances in ML than ever before
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Input: I tried 10000 random restarts of my neural network, but I 
was accused of overfitting. I guess no good seed goes unpunished.

1.3B model: The joke is that if you try 10000 different seed choices, 
you'll eventually find one that works, but you'll be accused of 
overfitting.

175B model: This joke is a play on words related to neural networks, 
a type of machine learning algorithm.
The punchline, "I guess no good seed goes unpunished," is a play on 
the phrase "no good deed goes unpunished." In this case, "good 
seed" refers to a starting point for the random restarts, and the joke 
implies that even when trying to improve the neural network's 
performance, the person is still accused of overfitting.

Language models explaining jokes



Core Challenge with Scale: Efficiency

Smaller/faster 
model

Is it possible to get there?

Efficiency

Ac
cu

ra
cy

Larger/slower
model

Efficiency unlocks new capabilities
(e.g., long context)
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Efficiency eases training, deployment, 
and facilitates research



Approach to Efficiency: Understanding Algorithms & Systems

Fundamental algorithms Hardware accelerators & distributed systems

x
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Fast matrix-vector multiply Attention mechanism Block-oriented device Asymmetric memory hierarchy



Main Idea: Hardware-aware Algorithms
IO-awareness: 
reducing reads/writes to GPU memory yields significant speedup

FlashAttention: fast and memory-efficient attention 
algorithm, with no approximation
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D., Fu, Ermon, Rudra, Ré, NeurIPS 2022
D., 2023

State-space expansion: 
expand recurrent states in SRAM only to avoid memory cost
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Selection Mechanism

GPU 
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Mamba: selective state-space model that matches Transformers on 
language model, with fast inference and up to 1M context 

Gu*, D.*, 2023.



Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio

Outlines
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FlashAttention

Mamba: Selective 
State-Space



Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Outlines
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FlashAttention

Mamba: Selective 
State-Space

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio



Motivation: Modeling Long Sequences

NLP: Large context required to 
understand books, plays, 

codebases.

Computer vision: higher 
resolution can lead to better, 

more robust insight.

Time series, audio, video, 
medical imaging data naturally 

modeled as sequences of 
millions of steps.
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Enable 
New Capabilities

Close Reality Gap Open New Areas



Efficiency is the Bottleneck for Modeling Long Sequences with Attention

How to efficiently scale models to longer sequences?
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Context length: how many other 
elements in the sequence does 
the current element interact with.

2x↓

Increasing context length slows down (or stops) training



Background: Attention is the Heart of Transformers
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Background: Attention Mechanism

O = Softmax(QKT)V
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Q
(N x d)

K
(N x d)

x

V
(N x d)

x

O
(N x d)

=

Query Key Similarity 
Score

Attention prob 
= row-wise normalized 

similarity score

Value Output

Softmax 𝑠!, ⋯ , 𝑠" =
𝑒#!

∑$ 𝑒#"
, ⋯ ,

𝑒##

∑$ 𝑒#"

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 𝑄 𝐾!
(N x N)

A = Softmax(𝑆)
(N x N)

Attention scales quadratically in sequence length N



Is there a fast, memory-efficient, and exact attention algorithm?
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Background: Approximate Attention

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Approximate attention: tradeoff quality for speedApproximate attention: tradeoff quality for speed fewer FLOPs



Our Observation: Attention is Bottlenecked by Memory Reads/Writes
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Q
(N x d)

K
(N x d)

S = 𝑄 𝐾!
(N x N)

x

A = Softmax(𝑆)
(N x N)

V
(N x d)

x

O
(N x d)

=

Query Key Similarity 
Score

Attention prob 
= row-wise normalized 

similarity score

Value Output

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64-128

The biggest cost is in moving the bits!
Standard implementation requires repeated R/W 

from slow GPU memory



Background: GPU Compute Model & Memory Hierarchy

Can we exploit the memory asymmetry to get speed up? 
With IO-awareness (accounting for R/W to different levels of memory) 

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.
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1. Inputs start out in 
HBM (GPU memory)

2. Data moved to 
compute units & SRAM 

for computation

3. Output written 
back to HBM

https://horace.io/brrr_intro.html


How to Reduce HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling: Restructure algorithm to load block by 
block from HBM to SRAM to compute attention.

(2) Recomputation: Don’t store attn. matrix 
from forward, recompute it in the backward.

Challenges: 

(1) Compute softmax normalization without access 
to full input. 

(2) Backward without the large attention matrix from 
forward.

17



Attention Computation Overview

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺) 𝑨
𝒍 , 𝑽

𝒍 =.
𝒊

exp 𝑺 𝒊

𝑸

𝑲𝑻

𝑽, =

Output

Softmax row-wise 
normalization constant 18Compute by blocks: easy to split Q, but how do we split K & V?



𝑨(𝟏)

𝒍
, 𝑽 𝟏

+
𝑨(𝟐)

𝒍
, 𝑽(𝟐)

Tiling – 1st Attempt: Computing Attention by Blocks

𝑸

𝑽(𝟏)

, =

Output

(𝑲 𝟏 )𝑻 (𝑲 𝟐 )𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

Challenge: How to compute softmax normalization with just 
local results? 

𝒍 =.
𝒊

exp 𝑺 𝟏
𝒊 +.

𝒊

exp 𝑺𝟐 𝒊

Example: Split K into 2 blocks

Softmax row-wise 
normalization constant

Goal: 
Load each block from HBM to 
SRAM & do local computation 
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𝑶(𝟐) =
𝒍(𝟏)

𝒍(𝟐)
𝑶(𝟏)

+
𝑨(𝟐)

𝒍(𝟐)
, 𝑽(𝟐)

Tiling – 2nd Attempt: Computing Attention by Blocks, with Softmax Rescaling

𝑸

𝑽(𝟏)

, =

Output

(𝑲 𝟏 )𝑻 (𝑲 𝟐 )𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

𝒍(𝟏) =.
𝒊

exp 𝑺 𝟏
𝒊

𝒍(𝟐) = 𝒍(𝟏) + .
𝒊

exp 𝑺 𝟐
𝒊

𝑶(𝟏) =
𝑨(𝟏)

𝒍(𝟏)
, 𝑽(𝟏)

Local 
computation

Tiling + Rescaling allows local computation in SRAM, without 
writing to HBM, and get the right answer!

Stored in HBM

Computed in SRAM 
(not materialized in HBM)
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Goal: 
Load each block from HBM to 
SRAM & do local computation 

Wrong 
denominator L

𝒍 =.
𝒊

exp 𝑺 𝟏
𝒊 +.

𝒊

exp 𝑺𝟐 𝒊
Output we want:

𝑶 =
𝑨(𝟏)

𝒍 , 𝑽 𝟏 +
𝑨(𝟐)

𝒍 , 𝑽(𝟐)

Rescaling to 
correct 

denominator 



Tiling
Decomposing large softmax into smaller ones by scaling.

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to 
that block.

3. Update output in HBM by scaling.

Animation credit: Francisco Massa
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Recomputation (Backward Pass)

By storing softmax normalization from forward (size N), 
quickly recompute attention in the backward from 
inputs in SRAM. 

FlashAttention speeds up backward pass even with increased FLOPs.

Attention Standard FlashAttention

GFLOPs 66.6 75.2 (↑13%)

HBM reads/writes (GB) 40.3 4.4 (↓9x)

Runtime (ms) 41.7 7.3 (↓6x)

22

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺)
𝑨
𝒍
, 𝑽

𝑸

𝑲𝑻

𝑽, =

Output

Stored in HBM

Recomputed in SRAM 
(not materialized in HBM)

𝒍 =.
𝒊

exp 𝑺 𝒊



FlashAttention: 2-4x speedup, 10-20x memory reduction

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length 23



GPT3: Faster Training, Longer Context, Better Model

FlashAttention speeds up GPT-3 training by 2x, 
increase context length by 4x, improving model quality

Shoeybi et al. arXiv:1909.08053 2019. 24

Model Val perplexity
on the Pile (lower better)

GPT-1.3B, 2K context 5.45

GPT-1.3B, 8K context 5.24

GPT-2.7B, 2K context 5.02

GPT-2.7B, 8K context 4.87

2x↓

2.4x↑

24



Summary
FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

25

Key ideas: 
- Reduce non-matmul FLOPs
- Parallelize over seqlen dimension to improve 
occupancy
- Better work partitioning between warps to 
reduce communication

Upshot: 2x faster wallclock, can train models 
with 2x context length for the same cost
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Optimizing FlashAttention for H100 GPU

New hardware features on H100: 
- wgmma instruction: higher matmul
throughput
- TMA: faster loading from global memory <-> 
shared memory
- FP8: lower precision, higher throughput

Upshot: 1.2-2.5x speed up by using new 
features

Ganesh Bikshandi and Jay Shah

H100 80GB SXM5

Ganesh Bikshandi and Jay Shah, A Case Study in CUDA Kernel Fusion: Implementing FlashAttention-2 on NVIDIA Hopper Architecture using the CUTLASS Library
Ganesh Bikshandi and Jay Shah, Delivering 1 PFLOP/s of Performance with FP8 FlashAttention-2



Summary
Flash-Decoding: Faster Decoding for Long Context Inference
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Flash-Decoding: 
- Faster loading: parallelize KV cache over seqlen dim
- Separate reduction step to combine results

Upshot: 2-8x faster end-to-end generation on 
CodeLlama 34B with context 32k-100k. 

Previous methods:
- Parallelizes across blocks of queries, batch 
size, and heads only
- Does not to occupy the entire GPU during 
decodingà slow KV cache loading. 

Tri Dao, Daniel Haziza, Francisco Massa, Grigory Sizov

Animation credit: Daniel Haziza

Decoding IO bottleneck: all about loading KV cache as fast as possible 



Summary

Code: https://github.com/Dao-AILab/flash-attention

FlashAttention: fast and memory-efficient algorithm for exact attention

Key algorithmic ideas: tiling, recomputation

Upshot: faster training, better models with longer sequences

Summary – FlashAttention

28

https://github.com/HazyResearch/flash-attention


Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Outlines
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FlashAttention

Mamba: Selective 
State-Space

Structured State Space Models (S4)
Selection Mechanism
Applications: language modeling, DNA, audio
Slides credit: Albert Gu (CMU)



Deep Sequence Model

Normalization

Linear

SSM

Normalization

Linear

Convolution

Normalization

Linear

Attention

CNN (ResNet) Transformer SSNN



Recurrent Neural Networks (RNN)

Natural autoregressive (causal) model✓

✗ Slow training on accelerators and
poor optimization (vanishing gradients)

Sequential



Attention (Transformers)

Strong performance, parallelizable✓

✗ Quadratic-time training, linear-time inference
(in the length of the sequence)

Dense interactions



Selective State Spaces

Performance: matches Transformers on LM✓

Project

Discretize
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Selection Mechanism

GPU 
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Efficiency: parallelizable training + fast inference✓

Long Context: improves up to million-length sequences✓



ℎ𝑥 𝑦

𝐴

State Space Models (SSM)

R. E. Kalman. "A New Approach to Linear Filtering and Prediction Problems." ASME 1960

<latexit sha1_base64="wnrw4p+iRWfSlT5OFI7I3O0Aecg="></latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)



Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications

35



Structured State Space Models (S4)

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent 
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous 
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional 
Representation

Deep learning model related to SSMs, RNNs, CNNs

Modeling Sequences with Structured State Spaces
Gu. PhD Dissertation.



𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk="></latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)



𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D
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𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

1-D

N-D

1-D
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1-D

N-D

1-D

<latexit sha1_base64="oPDO2K4TKkNv3WqmY9mWt8yHfPk="></latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)



SSMs: Continuous Representation

Operates on signals and sequences

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent 
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous 
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional 
Representation



SSM: Recurrent Representation

Efficient autoregressive computation

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent 
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous 
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional 
Representation



Computing SSMs Recurrently

Efficient autoregressive computation of state

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)

<latexit sha1_base64="LNzaz8OqkuNHz2nYhADHOBJOScE="></latexit>

h0(t) = Ah(t) +Bx(t)



SSM: Convolutional Representation

Efficient parallelizable computation

ℎ = �̅�ℎ + &𝐵𝑥
𝑦 = ̅𝐶ℎ + +𝐷𝑥

Recurrent 
Representation

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous 
Representation

ℎ𝑥 𝑦
𝐴

𝑦 = +𝐾 ∗ 𝑥

Convolutional 
Representation



Computing SSMs Convolutionally

Output can be computed without computing state

𝑥(𝑡)

ℎ(𝑡)

𝑦(𝑡)



SSMs are equivalent to convolutions

Computing SSMs Convolutionally

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o="></latexit>

y(t) = x(t) ⇤K(t)



Computing SSMs Convolutionally

Parallelizable + nearly-linear computation

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o="></latexit>

y(t) = x(t) ⇤K(t)



Computing SSMs Convolutionally

Generalizes convolutional neural networks (CNN)

*
𝑥(𝑡)

𝐾(𝑡)

𝑦(𝑡)

*

<latexit sha1_base64="qVLk4FznE5rlyGjzDT+TVO3Sk4o=">AAACSHicbVDLSsNAFJ3Ud31VXboZLIKClER8bQTRhYILH1gV2lImk9s6dDIJMzfFEvJB/oobt/oT4k7cOYld+LowzOGccx8cP5bCoOu+OKWR0bHxicmp8vTM7Nx8ZWHx2kSJ5lDnkYz0rc8MSKGgjgIl3MYaWOhLuPF7R7l+0wdtRKSucBBDK2RdJTqCM7RUu3LURLjHYk56qAXvXUKQpYNsDdfpPr3PvyYzSL/ZzqTow7EGUFl6mhvblapbc4uif4E3BFUyrPN25bUZRDwJQSGXzJiG58bYSplGwSVk5WZiIGa8x7rQsFCxEMxG0BexKWArLQ7J6KoVA9qJtH0KacF+b05ZaMwg9K0zZHhnfms5+Z/WSLCz10qFihMExb8WdRJJMaJ5iDQQGjjKgQWMa2HPpvyOacbRRl3+scYPs7INyPsdx19wvVnzdmrbF1vVg8NhVJNkmayQNeKRXXJATsg5qRNOHsgTeSYvzqPz5rw7H1/WkjPsWSI/qlT6BGawsvQ=</latexit>

y(t) = x(t) ⇤K(t)



Linear Time Invariant (LTI)

<latexit sha1_base64="wnrw4p+iRWfSlT5OFI7I3O0Aecg="></latexit>

h0(t) = Ah(t) +Bx(t)

y(t) = Ch(t) +Dx(t)

Parameters are constant (invariant) through time

• Linear recurrence (e.g. LRU)
• Global convolution (e.g. Hyena)

Can use LTI SSM to refer to any model that is a: 

Great for “continuous” domains (audio, images) but not for text



Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications

52



Motivation: Tradeoffs of the State

53

Tradeoffs of sequence models can be understood through 
examining their autoregressive state

Neural ODEsRNN Convolution Attention



Motivation: Tradeoffs of the State

Efficient: Constant-time inference, 
linear-time training

✓

✗ Poor performance on information-dense 
modalities (language) 

State = fixed-sized vector (compression)



Motivation: Tradeoffs of the State

✓

✗

State = cache of entire history (no compression)

Strong performance: Models all connections, long-
range dependencies

Inefficient: Linear-time inference, quadratic-
time training



Motivation: Tradeoffs of the State

No state compression

Performance ↑
Efficiency ↓

ℎ̇ = 𝐴ℎ + 𝐵𝑥
𝑦 = 𝐶ℎ + 𝐷𝑥

Continuous 
Representation

ℎ𝑥 𝑦
𝐴

Strong state compression

Efficiency ↑
Performance ↓



Selection Mechanism

57

S4 with selectivity and computed with a scan



Selection Mechanism
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Selection Mechanism

GPU 
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Same 1D ⟶ 1D map, but parameters depend on input



Selection Mechanism

Project

Discretize
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Selection Mechanism

GPU 
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

But wait – LTI models were necessary for efficiency
Can't compute large state, must use convolution



Hardware-aware State Expansion

Idea: Only materialize the expanded state in more 
efficient levels of the memory hierarchy

Project

Discretize
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Selection Mechanism

GPU 
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion



Mamba: A Simplified SSM Architecture

61

H3 Gated MLP Mamba

Linear 
projection

Sequence 
transformation

Nonlinearity 
(activation or 
multiplication)

XX X

!

X
Conv

SSM

X !!

Conv

SSM

⨂



Outline

• Structured State Space Models (S4)

• Selective State Space Models (Mamba)

• Applications
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Language Modeling – Scaling Laws

Transformer: GPT-3 model + training recipe



Language Modeling – Scaling Laws

H3, Hyena, RWKV, RetNet: Recent SSMs for LM



Language Modeling – Scaling Laws

Transformer++: Llama model + training recipe



Language Modeling – Scaling Laws

Mamba: First attention-free model to compete with 
strong modern Transformer models



Language Modeling – Zero-shot Evals 

68Mamba matches/beats Transformers of similar size



DNA Pretraining

69

Can have extremely
long-range interactions

Towards genomics foundation models

Next-token (base pair) 
pretraining for DNA

Task

Challenge



DNA Scaling Laws – Context Length

70

Unlike LTI – better scaling with context length



Audio Modeling – Pretraining

71

Improved perplexity up to 1M sequences (1min audio)



Summary

Match or beat strongest Transformer architecture on language 

Key algorithmic ideas: selection mechanism, hardware-aware state expansion 

Upshot: better models with linear (instead of quadratic) scaling in sequence length

Summary – Mamba

73

Code: https://github.com/state-spaces/mamba/

https://github.com/state-spaces/mamba/


Implications for Foundation Models

75

LLM

Prompting In-Context 
Learning

RLHF

Pre-training
(statistical 
modeling)

Instruction 
Tuning

Cross-modal 
transfer

Extensive work (and speculation) on 
how statistical modeling assumptions 
might lead to downstream properties!

...but what is an LLM?

LLMs/FMs have many 
mysterious properties and 

affordances



Implications for Foundation Models

76

LLM

Prompting In-Context 
Learning

RLHF

Pre-training 
(statistical 
modeling)

Transformer
(attention)

Instruction 
Tuning

Cross-modal 
transfer

What if the architecture is the 
root of these phenomena?

...but what is an LLM?

LLMs/FMs have many 
mysterious properties and 

affordances
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Prompting? In-Context 
Learning?

RLHF?

Pre-training 
(statistical 
modeling)

State Space 
Model

Instruction 
Tuning?

Cross-modal 
transfer?

What if the architecture is the 
root of these phenomena?

...but what is an LLM?

LLMs/FMs have many 
mysterious properties and 

affordances

LLM
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Prompting? In-Context 
Learning?

RLHF?

Pre-training 
(statistical 
modeling)

State Space 
Model

Instruction 
Tuning?

Cross-modal 
transfer? Deeper understanding of FMs✓

Scenario 1: SSMs work as well as 
Transformer downstream

The next dominant architecture?✓

Scenario 2: SSMs are missing some 
downstream capabilities

LLM


