
Natural Language Processing
with Deep Learning

CS224N/Ling284

Shikhar Murty
Lecture 12: Efficient Neural Network Training

Lecture Plan

Lecture 12: Efficient Neural Network Training - hopefully useful for final projects!
1. Mixed Precision Training [20 mins]
2. Multi-GPU Training with DDP / FSDP [40 mins]
3. Parameter Efficient Finetuning: LoRA [20 mins]

• Announcements
• Proposal grades coming out today
• Final project milestone details is out today!
• Worth 5% of overall grade
• Due on May 21st (12 days to work on this)
• Max 2 pages
• Use this as a forcing function to get work done for your final project!

2

3

Mixed Precision Training

Floating Points 101

4

S

sign

E E E E E F F F F F F F F
Exponent (8 bits) Digits / Mantissa (23 bits)

E E EFP32 …….

Floating Points 101

5

S

sign

E E E E E F F F F F F F F
Exponent (8 bits) Digits / Mantissa (23 bits)

E E EFP32 …….

Memory requirement: 4 bytes

Floating Points 101

6

S

sign

E E E E E F F F F F F F F
Exponent (8 bits) Digits / Mantissa (23 bits)

E E EFP32 …….

Floating Points 101

7

S

sign

E E E E E F F F F F F F F
Exponent (8 bits) Digits / Mantissa (23 bits)

E E EFP32 …….

range precision

Can represent [2! , 2! 	(1	 + 𝜖), 2! 1	 + 	2	𝜖 	, … , 2!"#] where 𝜖 = 2$%&

Floating Points 101

8

sign Exponent (5 bits) Digits / Mantissa (10 bits)

FP16

sign Exponent (8 bits) Digits / Mantissa (23 bits)
FP32 …….

Training Neural Networks in Half-Precision?

9

sign Exponent (5 bits) Digits / Mantissa (10 bits)

FP16

sign Exponent (8 bits) Digits / Mantissa (23 bits)
FP32 …….

• Standard Neural Network Training: Model parameters and gradients represented in
FP32 (CUDA OOM errors with large models).

• Possible solution: Use FP16!

10

• Standard Neural Network Training: Model parameters and gradients represented in
FP32 (CUDA OOM errors with large models).

• Possible solution: Use FP16!
• Less range: Roughly 2e-14 to 2e15 on both sides
• Smaller precision leads to rounding errors: 1.0001 is 1 in half precision

FP16

Training Neural Networks in Half-Precision?

11

• Standard Neural Network Training: Model parameters and gradients represented in
FP32 (CUDA OOM errors with large models).

• Possible solution: Use FP16!
• Less range: Roughly 2e-14 to 2e15 on both sides
• Smaller precision leads to rounding errors: 1.0001 is 1 in half precision
• For Neural Net training:
• Gradients can underflow

Training Neural Networks in Half-Precision?

12

• Standard Neural Network Training: Model parameters and gradients represented in
FP32 (CUDA OOM errors with large models).

• Possible solution: Use FP16!
• Less range: Roughly 2e-14 to 2e15 on both sides
• Smaller precision leads to rounding errors: 1.0001 is 1 in half precision
• For Neural Net training:
• Gradients can underflow
• Weight updates are imprecise

Training Neural Networks in Half-Precision?

13

• Still use FP16, but use FP32 for neural network updates!

Solution: Mixed Precision Training

1. Maintain a copy of model parameters in FP32 (Master weights)
2. Run forward pass in FP16
3. Compute gradient in FP16
4. Copy gradient into FP32
5. Update master weights in FP32 [fixes weight update issue!]
6. Copy into FP16 version

Take-2Sharang et al. 2018

14

Solution: Mixed Precision Training

15

• Still use FP16, but use FP32 for neural network updates!

Solution: Mixed Precision Training

1. Maintain a copy of model parameters in FP32 (Master weights)
2. Run forward pass in FP16
3. Compute gradient in FP16
4. Copy gradient into FP32
5. Update master weights in FP32 [fixes weight update issue!]
6. Copy into FP16 version

Here, gradients can still underflow (small gradients will become exactly 0).

Take-2Sharang et al. 2018

16

• Still use FP16, but use FP32 for neural network updates!

Solution: Mixed Precision Training

Recipe for Mixed-Precision TrainingSharang et al. 2018

1. Maintain a copy of model parameters in FP32 (Master weights)
2. Run forward pass in FP16
3. Scale loss by a large value (to artificially increase gradient)
4. Compute gradient in FP16
5. Copy gradient into FP32 and divide by scale factor
6. Update master weights in FP32 [fixes weight update issue!]
7. Copy into FP16 version

17

Mixed Precision Training in PyTorch

Source: https://pytorch.org/docs/stable/notes/amp_examples.html

18

Can we get rid of gradient scaling?

sign Exponent (5 bits) Digits / Mantissa (10 bits)

FP16

sign Exponent (8 bits) Digits / Mantissa (23 bits)
FP32 …….

We need scaling because FP16 has a small range compared to FP32

19

Can we get rid of gradient scaling?

sign Exponent (5 bits) Digits / Mantissa (10 bits)

FP16

sign Exponent (8 bits) Digits / Mantissa (23 bits)
FP32 …….

We need scaling because FP16 has a small range compared to FP32

💡Can we allocate 8 bits for exponent (same range) while sacrificing
precision?

20

Greater Dynamic Range with Bfloat16

sign Exponent (5 bits) Digits / Mantissa (10 bits)

FP16

sign Exponent (8 bits) Digits / Mantissa (23 bits)
FP32 …….

sign Exponent (8 bits) Digits / Mantissa (7 bits)
BFloat16

Greater Dynamic Range with Bfloat16:
can represent much smaller numbers and much larger numbers (no INF / NaNs)

21

Source: https://pytorch.org/docs/stable/amp.html#torch.autocast

Bfloat16 does not need GradScalars

22

Greater Dynamic Range with Bfloat16

Results from finetuning DistilBERT for sentiment classification on a single A100 GPU.
Source: https://sebastianraschka.com/blog/2023/llm-mixed-precision-copy.html

23

Multi-GPU Training

24

GPU:0
Data

Optimizer

What’s stored on GPU VRAM?

NN: Model parameters (in FP16)

Optimizer:
Master weights (FP32) +
Adam momentum (FP32) +
Adam variance (FP32) +

Adam Optimizer

minibatch gradient

Multi-GPU Training

25

GPU:0

GPU:1

GPU:2

GPU:3

Each GPU has a synchronized copy of the model with its own slice of the data

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

26

Forward Pass in parallel
GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

27

Run Backward pass while
communicating gradients for

upstream parameters

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

28

“All Reduce” Operation:

Communication overhead: 2 bytes
per parameter (gradients in FP16)

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

29

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

At this point, the optimizer has the
cumulated gradient from all GPUs!

30

Optimizer

Optimizer

Optimizer

Optimizer

The Basics: Distributed Data Parallel (DDP)

Update model parameters to
maintain synchronization

Unfortunately, Naive DDP has poor memory scaling

31

2 bytes for FP16 parameters

2 bytes for FP16 backward pass gradients

4 bytes for FP32 master weights

4 bytes for FP32 Adam momentum

4 bytes for FP32 Adam variance

ZeRO Stage-1: Optimizer State Sharding (Pos)

32

• Each GPU has the full set of FP16 model parameters, and computes the gradient on its
subset of data

• Each GPU has a sharded copy of the full optimizer state.
• Each GPU is responsible for updating a shard of the full parameters

ZeRO Stage-1: Optimizer State Sharding (Pos)

33

• Each worker computes gradient on its subset of data.
• Perform a reduce-scatter so that each worker gets the

full gradient corresponding to their parameter shard:

• Each worker updates its parameters
• Perform an all-gather to synchronize params

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

ZeRO Stage-1: Optimizer State Sharding (Pos)

34

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/attachment/fsdp-graph-2a/

Communication overhead: 2 bytes
per parameter (gradients in FP16)

We saved memory for free!

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

We used all-reduce
for DDP

ZeRO Stage-2: Optimizer State + gradient sharding (Pos+g)

35

Along with sharing optimizer state, can we also shard gradients? 🤔
Complexity: We still need the full gradient for the worker’s data slice!

ZeRO Stage-2: Optimizer State + gradient sharding (Pos+g)

36

Along with sharing optimizer state, can we also shard gradients? 🤔
Complexity: We still need the full gradient for the worker’s data slice!

Solution:
• Never instantiate the full gradient vector!
• Send gradient to the “GPU in charge” as soon as the gradient for a shard is made available in the backward pass

ZeRO Stage-2: Optimizer State + gradient sharding (Pos+g)

37

• Worker performs a backward pass layer-by-layer in the computation
graph

• Suppose worker is at layer-j:
• Take upstream gradient, compute gradient for parameters at layer-j,
• immediately send the gradients to the correct worker (reduce)
• deallocate memory for parameter gradient.

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

ZeRO Stage-2: Optimizer State + gradient sharding (Pos+g)

38

• Worker performs a backward pass layer-by-layer in the computation
graph

• Suppose worker is at layer-j:
• Take upstream gradient, compute gradient for parameters at layer-j,
• immediately send the gradients to the correct worker (reduce)
• deallocate memory for parameter gradient.

• Worker updates its param shard using corresponding gradient + state
• Perform an all-gather to synchronize

GPU:0

GPU:1

GPU:2

GPU:3

Optimizer

Optimizer

Optimizer

Optimizer

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

39

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

40

Caveat: So far, communication overhead was ”free”.
With Full FSDP, this is no longer the case.

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

41

High-level sketch:

1. Divide model parameters into FSDP units

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

42

High-level sketch:

1. Divide model parameters into FSDP units

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

43

High-level sketch:

1. Divide model parameters into FSDP units
2. Shard each unit across multiple GPUs

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

44

High-level sketch:

1. Divide model parameters into FSDP units
2. Shard each unit across multiple GPUs
3. Run forward pass:
- perform an all-gather so each GPU gets all pieces of

a module.
- Run forward pass
- Discard param shards

all-gather

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

45

High-level sketch:

1. Divide model parameters into FSDP units
2. Shard each unit across multiple GPUs
3. Run forward pass

4. Run backward pass:
- perform an all-gather to get all pieces of module,
- Each GPU computes gradient for its data chunk
- Do a reduce-scatter to send full gradient piece to

the right GPU

reduce-scatter

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

46

High-level sketch:

1. Divide model parameters into FSDP units
2. Shard each unit across multiple GPUs
3. Run forward pass
4. Run backward pass
5. Each GPU updates its own shard using the full
gradient received earlier.

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

47

Communication overhead recap:

1. DDP: All reduce
2. ZeRO Stage-1 / 2: Reduce-Scatter + All-gather [memory saved for free]

ZeRO Stage-3 (Full FSDP): When even the model
parameters won’t fit

48

Communication overhead recap:

1. DDP: All reduce
2. ZeRO Stage-1 / 2: Reduce-Scatter + All-gather [memory saved for free]
3. ZeRO Stage-3: All-gather + Reduce-scatter + All-gather [More overhead!]

Revisiting GPU memory calculation

49

GPU memory consumption :=
Model parameters (in FP16) +

Gradients (FP16) +
Master weights (FP32) +

Adam momentum (FP32) +
Adam variance (FP32) +

Model Activations (This scales with the batch size)!

Multi-GPU Training Optimizations Recap

50

Always use Mixed-Precision Training
Always use BFloat16 if torch.cuda.is_bf16_supported()

Try larger batch size / use ZeRO Stage-2 Does ZeRO Stage-3 solve OOM errors??

Does batch-size = 1 fit on single GPU?

Try Parameter-Efficient
 Finetuning!

Yes No

No

51

Parameter-Efficient Finetuning
Adapted from slides by Diyi Yang

From fine-tuning to parameter-efficient fine-tuning (PEFT)

52

Full Fine-tuning
Update all model

parameters

Parameter-efficient Fine-tuning
Update a small subset of model

parameters

Why fine-tune only some
parameters?

1. Fine-tuning all parameters is
impractical with large models

2. State-of-the-art models are
massively over-
parameterized
→ Parameter-efficient fine-
tuning matches performance
of full fine-tuning

Why do we need efficient adaptation?

Slides credit to Benji Xie, Regina Wang and Pranav Gurusankar

● Exponential growth in maximum training compute for
largest AI models (~2x every 3.4 months) vs. global
compute capacity (~2x every 1.5 years)

● Clearly unsustainable rate of growth in AI computing
scale, forecasted to slow a lot in the next few years.

● As costs of training go up, AI development becomes
concentrated in only the most well-funded
organizations, especially in industry.

○ Concentrating market power could lead to only a
few dominant interests controlling a global
technology – whose value systems are embedded
in the AI of tomorrow?

Source: How much of AI progress is from scaling compute? And how far
will it scale? (by ‘jack’, AI Progress Essay Contest)

Accuracy vs Efficiency: What are we focusing on?

1. Emphasis on accuracy over efficiency in
current AI paradigm
• Is the tradeoff between efficiency and accuracy

linear? It’s quite that simple… [Ang et al., 2022]

2. Hidden environmental costs of
training (and fine tuning) LLMs
○ Most large players are non-transparent about the

costs of training their models.
○ Cornell scientists in 2021 estimated that training

GPT-3 was equivalent in carbon emissions to
running a coal power plant for 10 straight hours. AI papers tend to target accuracy rather than efficiency.

The figure shows the proportion of papers that target
accuracy, efficiency, both or other from a sample of 60
papers from top AI conferences (Green AI)

Slides credit to Benji Xie, Regina Wang and Pranav Gurusankar

https://arxiv.org/abs/1907.10597

“At Stanford, for example, more than 200 students in a class on reinforcement learning
were asked to implement common algorithms for a homework assignment. Though two
of the algorithms performed equally well, one used far more power.

If all the students had used the more efficient algorithm, the researchers estimated they
would have reduced their collective power consumption by 880 kilowatt-hours — about
what a typical American household uses in a month.”

An example using CS234 in Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning.

Slides credit to Benji Xie, Regina Wang and Pranav Gurusankar

https://www.jmlr.org/papers/volume21/20-312/20-312.pdf

56

• Assume we have a pre-trained autoregressive language model 𝑃-(𝑦|𝑥)
• E.g., GPT based on Transformer

• Adapt this pretrained model to downstream tasks (e.g., summarization, NL2SQL,
reading comprehension)
• Training dataset of context-target pairs 𝑥., 𝑦. ./0,…,1

• During full fine-tuning, we update 𝜙2 to 𝜙2 + Δ𝜙	by following the gradient to
maximize the conditional language modeling objective

max
-

/
(3,4)

/
5/0

|4|
log(𝑃-(𝑦5|𝑥, 𝑦75))

Full Finetuning

Full-Finetuning

57

• For each downstream task, we learn a different set of parameters Δ𝜙
• |Δ𝜙|	= |𝜙2|
• GPT-3 has a | 𝜙2| of 175 billion
• Expensive and challenging for storing and deploying many independent instances

• Can we do better?

Full-Finetuning

58

• For each downstream task, we learn a different set of parameters Δ𝜙
• |Δ𝜙|	= |𝜙2|
• GPT-3 has a | 𝜙2| of 175 billion
• Expensive and challenging for storing and deploying many independent instances

• Can we do better?
• Key idea: encode the task-specific parameter increment Δ𝜙 = Δ𝜙(Θ) by a smaller-

sized set of parameters Θ, Θ ≪ |𝜙2|

• The task of finding Δ𝜙	becomes optimizing over Θ

max
8

/
(3,4)

/
5/0

|4|
log(𝑃-!9:-(8)	(𝑦5|𝑥, 𝑦75))

Low-rank-parameterized update matrices

59

• Updates to the weights have a low “intrinsic rank”
during adaptation (Aghajanyan et al. 2020)

• 𝑊; ∈ 	ℝ<×>: a pretrained weight matrix
• Constrain its update with a low-rank

decomposition:
 	𝑊; + Δ𝑊 = 𝑊; + 𝛼𝐵𝐴
 where 𝐵 ∈ 	ℝ<×?, 𝐴	 ∈ 	ℝ?×>, 𝑟	 ≪ min(𝑑, 𝑘)

• 𝛼 is the tradeoff between pre-trained
“knowledge” and task-specific “knowledge”

• Only A and B contain trainable parameters

Low-rank-parameterized update matrices

60

• As one increase the number of trainable
parameters, training LoRA converges to training
the original model

• No additional inference latency: when switching
to a different task, recover 𝑊; by subtracting 𝐵𝐴
and adding a different 𝐵@𝐴@

• Often LoRA is applied to the weight matrices in
the self-attention module

Low-rank-parameterized update matrices

61

Source: https://lightning.ai/pages/community/article/lora-llm/

LoRA in practice

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all metrics,
higher is better. LoRA outperforms several baselines with comparable or fewer trainable parameters

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
"Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

63

LoRA matches or
exceeds the fine-
tuning baseline on
all three datasets

LoRA exhibits better
scalability and task
performance.

LoRA in practice

Understanding low-rank adaptation

64

Summarizing everything:

65

Always use Mixed-Precision Training
Always use BFloat16 if torch.cuda.is_bf16_supported()

Try larger batch size / use ZeRO Stage-2 Does ZeRO Stage-3 solve OOM errors??

Does batch-size = 1 fit on single GPU?

Try LoRA!

Yes No

No

Even simple: start with Llama 7B + bfloat16 + ZeRO Stage-3 (or FSDP) + LoRA 🫡

