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Lecture 8: Self-Attention and Transformers



Lecture Plan

1. From recurrence (RNN) to attention-based NLP models
2. The Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers
Reminders: 

See the 2023 lecture notes for some bonus material 
Assignment 4 due a week from today! Use Colab for the final training if you don’t have 
a GPU.
Final project proposal out tonight, due Tuesday, Feb 14 at 4:30PM PST!
Please try to hand in the project proposal on time; we want to get you feedback 
quickly!
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http://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf


Last last lecture: Multi-layer RNN for machine translation

Die       Proteste    waren    am  Wochenende eskaliert <EOS>      The       protests    escalated    over          the     weekend
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The      protests  escalated    over         the      weekend   <EOS>

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i 
are the inputs to RNN layer i + 1
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NMT: the first big success story of NLP Deep Learning
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Neural Machine Translation went from a fringe research attempt in 2014 to the leading 
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!
• SMT systems, built by hundreds of engineers over many years, outperformed by 

NMT systems trained by small groups of engineers in a few months



The final piece: the bottleneck problem in RNNs

En
co

de
r R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil           a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Problems with this architecture?

Encoding of the 
source sentence. 
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1. Why attention? Sequence-to-sequence: the bottleneck problem

En
co

de
r R

N
N

Source sentence (input)

<START>    he        hit        me       with        a         pieil           a         m’      entarté

he        hit        me       with        a          pie    <END>

Decoder RN
N

Target sentence (output)

Encoding of the 
source sentence. 

This needs to capture all 
information about the 

source sentence.
Information bottleneck!
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Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)
• Linear order of words is “baked in”; we already know linear order isn’t the 

right way to think about sentences…

7

The waschef who  …

Info of chef has gone through 
O(sequence length) many layers!



Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length) 
unparallelizable operations
• GPUs can perform a bunch of independent computations at once!
• But future RNN hidden states can’t be computed in full before past RNN 

hidden states have been computed
• Inhibits training on very large datasets!
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Numbers indicate min # of steps before a state can be computed



Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to the encoder to focus 
on a particular part of the source sequence

• First, we will show via diagram (no equations), then we will show with equations
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The starting point: mean-pooling for RNNs
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• Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoyed

positive

Sentence 
encoding

How to compute 
sentence encoding?

Usually better: 
Take element-wise 
max or mean of all 

hidden states



Attention is weighted averaging, which lets you do lookups!
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Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.



Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es
dot product
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Core idea: on each step of the decoder, use direct connection to the encoder to focus on a 
particular part of the source sequence



Sequence-to-sequence with attention

En
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de
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RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
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n 
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or
es
dot product
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Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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RN
N

Source sentence (input)
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Decoder RN
N
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
sc

or
es

On this decoder timestep, we’re 
mostly focusing on the first 
encoder hidden state (”he”)

At
te

nt
io

n 
di

st
rib

ut
io

n

Take softmax to turn the scores 
into a probability distribution
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
di

st
rib

ut
io

n
At

te
nt

io
n 

sc
or

es

Attention 
output

Use the attention distribution to take a 
weighted sum of the encoder hidden states.

The attention output mostly contains 
information from the hidden states that 
received high attention.
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Sequence-to-sequence with attention

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
te

nt
io

n 
di

st
rib

ut
io

n
At

te
nt

io
n 

sc
or

es

Attention 
output

Concatenate attention output 
with decoder hidden state, then 
use to compute !𝑦!	as before

!𝑦!	

he
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Sequence-to-sequence with attention

En
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de
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RN
N

Source sentence (input)

<START>il           a         m’      entarté

Decoder RN
N

At
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or
es

he

At
te
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io
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st
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n

Attention 
output

!𝑦#	

hit
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Sometimes we take the 
attention output from the 
previous step, and also 
feed it into the decoder 
(along with the usual 
decoder input). We do 
this in Assignment 4.



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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!𝑦%	

with

21



Sequence-to-sequence with attention
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Sequence-to-sequence with attention
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Decoder RN
N

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

he hit me with a

!𝑦'	

pie
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Attention: in equations

• We have encoder hidden states 
• On timestep t, we have decoder hidden state 
• We get the attention scores         for this step:

• We take softmax to get the attention distribution        for this step (this is a probability distribution and 
sums to 1)

• We use        to take a weighted sum of the encoder hidden states to get the attention output 

• Finally we concatenate the attention output        with the decoder hidden 
state      and proceed as in the non-attention seq2seq model

24



Attention is parallelizable, and solves bottleneck issues.

• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.
• We saw attention from the decoder to the encoder; today we’ll think about 

attention within a single sentence.
• Number of unparallelizable operations does not increase with sequence length.
• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2attention

attention
1 1 1 1 1 1 1 1

All words attend 
to all words in 
previous layer; 
most arrows here 
are omitted
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Attention is great!

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides a more “human-like” model of the MT process
• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we see what the decoder was focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself

26
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There are several attention variants

• We have some values and a query

• Attention always involves:
1. Computing the attention scores  
2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the context vector)

27

There are 
multiple ways 

to do this



Attention variants

There are several ways you can compute                from                                    and                :

• Basic dot-product attention:
• Note: this assumes               . This is the version we saw earlier.

• Multiplicative attention:                                     [Luong, Pham, and Manning 2015]
• Where                       is a weight matrix. Perhaps better called “bilinear attention”

• Reduced-rank multiplicative attention: 𝑒! = 𝑠" 𝑼"𝑽 ℎ! = (𝑼𝑠)"(𝑽ℎ!)
• For low rank matrices 𝑼 ∈ ℝ#×%(, 𝑽 ∈ ℝ#×%), 𝑘 ≪ 𝑑&, 𝑑'

• Additive attention: [Bahdanau, Cho, and Bengio 2014]
• Where                                                 are weight matrices and                is a weight vector. 
• d3 (the attention dimensionality) is a hyperparameter
• “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

28

More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative 
advantages/disadvantages of these in Assignment 4!

Remember this when we look 
at Transformers next week!

http://ruder.io/deep-learning-nlp-best-practices/index.html
https://arxiv.org/pdf/1703.03906.pdf


Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model 
for Machine Translation.

• However: You can use attention in many architectures 
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query) 

attends to all the encoder hidden states (values).
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Attention is a general Deep Learning technique

30

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute 

a weighted sum of the values, dependent on the query.

Intuition:
• The weighted sum is a selective summary of the information contained in the values, 

where the query determines which values to focus on.
• Attention is a way to obtain a fixed-size representation of an arbitrary set of 

representations (the values), dependent on some other representation (the query).

Upshot:
• Attention has become the powerful, flexible, general way pointer and memory 

manipulation in all deep learning models. A new idea from after 2010! From NMT!



Do we even need recurrence at all? 

31

• Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural 
network input. (ℎ#)
• This is also exactly what RNNs are used for – to pass information!
• Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass 

information!

2014-2017ish 
Recurrence

Lots of trial 
and error

2021
??????



The building block we need: self attention
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• What we talked about – Cross attention: paying attention to the input x to generate 𝑦#

En
co

de
r 

RN
N

Source sentence (input)

<START>il           a         m’      entarté

At
te

nt
io

n 
sc

or
es

At
te

nt
io

n 
di

st
rib

ut
io

n

Attention 
output

he hit me

!𝑦!	

wit
h

• What we need – Self attention: to generate 𝑦#, we need to pay attention to 𝑦$#



Self-Attention Hypothetical Example
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Self-Attention: keys, queries, values from the same sequence

34

Let 𝒘!:#	be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘$	, let 𝒙$ = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ&×|)| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ&×&

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆%& = 𝒒𝒊(𝒌𝒋 𝜶%& =
exp(𝒆%&)	

∑&* exp(𝒆%&()

3. Compute output for each word as weighted sum of values

𝒒% = 𝑄𝒙𝒊 (queries) 𝒌% = 𝐾𝒙𝒊 (keys) 𝒗% = 𝑉𝒙𝒊 (values)

𝒐% =3
𝒋

𝜶%& 𝒗%



Barriers
• Doesn’t have an inherent 

notion of order! 

Barriers and solutions for Self-Attention as a building block

35

Solutions



Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the 
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑$ ∈ ℝ&, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝$ are made of yet!
• Easy to incorporate this info into our self-attention block: just add the 𝒑$ to our inputs!
• Recall that 𝒙$ is the embedding of the word at index 𝑖. The positioned embedding is:

!𝒙! = 𝒙! + 𝒑!
In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

36



• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:
• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

•  Cons:
• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids 

cos(𝑖/10000'∗&/%)
𝒑$	 =

sin(𝑖/10000'∗&/%)

sin(𝑖/10000'∗
%
'/%)

cos(𝑖/10000'∗
%
'/%)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

Di
m

en
sio

n

37



• Learned absolute position representations: Let all 𝑝$ be learnable parameters!
Learn a matrix 𝒑 ∈ ℝ&×#, and let each 𝒑$ be a column of that matrix!

• Pros:
• Flexibility: each position gets to be learned to fit the data

•  Cons:
• Definitely can’t extrapolate to indices outside 1,… , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

38

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning! It’s all just weighted 
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

39



Adding nonlinearities in self-attention

• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network 
to post-process each output vector.

𝑚! = 𝑀𝐿𝑃 output! 	
    =	𝑊' ∗ ReLU 𝑊&	output! + 𝑏& + 𝑏'

The

𝑤! 𝑤+
chef

𝑤,
who

𝑤#
food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

40



Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence
• Like in machine translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

41



Masking the future in self-attention

• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

The

chef

who

[START]

For encoding 
these words

The chef who
[START]

We can look at these 
(not greyed out) words

𝑒#$ =	 %
𝑞#%𝑘$ , 𝑗 ≤ 𝑖
−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

42



Barriers
• Doesn’t have an inherent 

notion of order! 

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence
• Like in machine translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to 

the inputs

• Easy fix: apply the same 
feedforward network to each self-
attention output.

• Mask out the future by artificially 
setting attention weights to 0!
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• Self-attention:
• the basis of the method.

• Position representations:
• Specify the sequence order, since self-attention 

is an unordered function of its inputs.
• Nonlinearities:

• At the output of the self-attention block
• Frequently implemented as a simple feed-

forward network.
• Masking:

• In order to parallelize operations while not 
looking at the future.

• Keeps information about the future from 
“leaking” to the past.

Necessities for a self-attention building block:

44



Outline

1. From recurrence (RNN) to attention-based NLP models
2. The Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers
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The Transformer Decoder

46

• A Transformer decoder is how 
we’ll build systems like 
language models.

• It’s a lot like our minimal self-
attention architecture, but 
with a few more components.

• The embeddings and position 
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder



Recall the Self-Attention Hypothetical Example
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Hypothetical Example of Multi-Head Attention

48



Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.
• Let 𝑋 = 𝑥!; … ; 𝑥# ∈ ℝ#×& be the concatenation of input vectors.
• First, note that 𝑋𝐾 ∈ ℝ#×&, 𝑋𝑄 ∈ ℝ#×&, 𝑋𝑉 ∈ ℝ#×&.
• The output is defined as output = 	softmax 𝑋𝑄 𝑋𝐾 - 𝑋𝑉 ∈∈ ℝ#×&.

= 𝑋𝑄𝐾+	𝑋+

∈ ℝ+×+

All pairs of 
attention scores!

output ∈ ℝ,×%
=

𝐾+	𝑋+
𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 -

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾+	𝑋+softmax 𝑋𝑉

49



Multi-headed attention

• What if we want to look in multiple places in the sentence at once?
• For word 𝑖, self-attention “looks” where 𝑥$-𝑄-𝐾𝑥. is high, but maybe we want 

to focus on different 𝑗 for different reasons?
• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ
&×!", where ℎ is the number of attention heads, and ℓ ranges 

from 1 to ℎ.
• Each attention head performs attention independently:

• outputℓ = 	softmax 𝑋𝑄ℓ𝐾ℓ-𝑋- ∗ 𝑋𝑉ℓ, where  outputℓ ∈ ℝ&/1

• Then the outputs of all the heads are combined!
• output = output!; … ; output1 𝑌, where 𝑌 ∈ ℝ&×&

• Each head gets to “look” at different things, and construct value vectors 
differently.50



Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.
• We compute 𝑋𝑄 ∈ ℝ#×&, and then reshape to ℝ#×1×&/1. (Likewise for 𝑋𝐾, 𝑋𝑉.)  
• Then we transpose to ℝ1×#×&/1; now the head axis is like a batch axis.
• Almost everything else is identical, and the matrices are the same sizes.
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𝑋𝑄

First, take the query-key dot 
products in one matrix 
multiplication: 𝑋𝑄 𝑋𝐾 -

𝐾+	𝑋+

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾+	𝑋+ 𝑋𝑉

output ∈ ℝ,×%
=

𝑃
=

mix

∈ ℝ-×+×+

3 sets of all pairs of 
attention scores!𝑋𝑄𝐾+	𝑋+=



Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.
• When dimensionality 𝑑 becomes large, dot products between vectors tend to 

become large.
• Because of this, inputs to the softmax function can be large, making the 

gradients small.
• Instead of the self-attention function we’ve seen:

outputℓ = 	softmax 𝑋𝑄ℓ𝐾ℓ-𝑋- ∗ 𝑋𝑉ℓ 

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large 
just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = 	softmax 23ℓ4ℓ
$2$

&/1
∗ 𝑋𝑉ℓ 
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The Transformer Decoder
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• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two 
optimization tricks that end up 
being :
• Residual Connections
• Layer Normalization

• In most Transformer diagrams, 
these are often written 
together as “Add & Norm”

Transformer Decoder



The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.
• Instead of 𝑋($) = Layer(𝑋 $7! ) (where 𝑖 represents the layer)

• We let 𝑋($) = 𝑋($7!) + 	Layer(𝑋 $7! ) (so we only have to learn “the residual” 
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(#'() Layer 𝑋(#)

𝑋(#'() Layer 𝑋(#)+

[no residuals] [residuals]

[Loss landscape visualization,
Li et al., 2018, on a ResNet]54

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf


The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing 

to unit mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ& be an individual (word) vector in the model.

• Let 𝜇 = ∑.8!& 𝑥.; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 = !
&
	∑.8!& 𝑥. − 𝜇

+
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ& and 𝛽 ∈ ℝ& be learned “gain” and “bias” parameters. (Can omit!)
• Then layer normalization computes:

output =
𝑥	 − 𝜇
𝜎 + 𝜖

∗ 𝛾 + 𝛽
Normalize by scalar 
mean and variance

Modulate by learned 
elementwise gain and bias55

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf


The Transformer Decoder
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• The Transformer Decoder is a 
stack of Transformer Decoder 
Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• That’s it! We’ve gone through 
the Transformer Decoder.

Transformer Decoder



The Transformer Encoder
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• The Transformer Decoder 
constrains to unidirectional 
context, as for language 
models.

• What if we want bidirectional 
context, like in a bidirectional 
RNN?

• This is the Transformer 
Encoder. The only difference is 
that we remove the masking 
in the self-attention.

Transformer DecoderNo Masking!



The Transformer Encoder-Decoder
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• Recall that in machine 
translation, we processed the 
source sentence with a 
bidirectional model and 
generated the target with a 
unidirectional model.

• For this kind of seq2seq 
format, we often use a 
Transformer Encoder-Decoder.

• We use a normal Transformer 
Encoder.

• Our Transformer Decoder is 
modified to perform cross-
attention to the output of the 
Encoder.



Cross-attention (details)

• We saw that self-attention is when keys, 
queries, and values come from the same 
source.

• In the decoder, we have attention that 
looks more like what we saw last week.

• Let ℎ!, … , ℎ# be output vectors from the 
Transformer encoder;  𝑥$ ∈ ℝ&

• Let 𝑧!, … , 𝑧# be input vectors from the 
Transformer decoder, 𝑧$ ∈ ℝ&

• Then keys and values are drawn from the 
encoder (like a memory):
• 𝑘$ = 𝐾ℎ$, 𝑣$ = 𝑉ℎ$.

• And the queries are drawn from the 
decoder, 𝑞$ = 𝑄𝑧$.
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ℎ_, … , ℎ`

𝑧7, … , 𝑧8 



Outline

1. From recurrence (RNN) to attention-based NLP models
2. Introducing the Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers

61



Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine 
Translation BLEU scores

Also more efficient to 
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]62



Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation! 

The old standard

63

https://arxiv.org/pdf/1801.10198.pdf


Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll 
go over on Thursday.
Transformers’ parallelizability allows for efficient pretraining, and have made them 
the de-facto standard. 

On this popular aggregate 
benchmark, for example:

All top models are 
Transformer (and 
pretraining)-based. 

More results Thursday when we discuss pretraining.
64

https://arxiv.org/pdf/1801.10198.pdf
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• Quadratic compute in self-attention (today):
• Computing all pairs of interactions means our computation grows 

quadratically with the sequence length!
• For recurrent models, it only grew linearly!

• Position representations:
• Are simple absolute indices the best we can do to represent position?
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?
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https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


• One of the benefits of self-attention over recurrence was that it’s highly 
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛+𝑑 , where 𝑛 is the 
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length
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= 𝑋𝑄𝐾+	𝑋+

∈ ℝ+×+

Need to compute all 
pairs of interactions!
  𝑂 𝑛#𝑑𝐾+	𝑋+

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).
• So, for a single (shortish) sentence,  𝑛 ≤ 30; 𝑛+ ≤ 𝟗𝟎𝟎.
• In practice, we set a bound like 𝑛 = 512.
• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?



• Considerable recent work has gone into the question, Can we build models like 
Transformers without paying the 𝑂 𝑇+  all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost
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Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In

fe
re
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e 

tim
e 

(s
)

Sequence length / batch size

https://arxiv.org/pdf/2006.04768.pdf


• As Transformers grow larger, a larger and larger percent of compute is outside 
the self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the 
quadratic cost attention we’ve presented here.
• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?
• Or would we unlock much better models with much longer contexts (>100k 

tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?
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Do Transformer Modifications Transfer?

70

• "Surprisingly, we find that most modifications do not meaningfully improve 
performance."



• Pretraining on Tuesday! 
• Good luck on assignment 4!
• Remember to work on your project proposal!

Parting remarks
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