
Natural Language Processing
with Deep Learning

CS224N/Ling284

Tatsunori Hashimoto
Lecture 8: Self-Attention and Transformers

Lecture Plan

1. From recurrence (RNN) to attention-based NLP models
2. The Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers
Reminders:

See the 2023 lecture notes for some bonus material
Assignment 4 due a week from today! Use Colab for the final training if you don’t have
a GPU.
Final project proposal out tonight, due Tuesday, Feb 14 at 4:30PM PST!
Please try to hand in the project proposal on time; we want to get you feedback
quickly!

2

http://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf

Last last lecture: Multi-layer RNN for machine translation

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6
-0.1
-0.7
0.1

0.4
-0.6
0.2
-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1
-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.1
0.3
-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5
-0.5
0.4
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6
-0.1
-0.7
0.1

0.1
0.3
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
0.3
0.1

-0.1
0.6
-0.1
0.3
0.1

0.2
0.4
-0.1
0.2
0.1

0.3
0.6
-0.1
-0.5
0.1

0.2
0.6
-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1
-0.4
0.2

0.2
0.6
-0.1
-0.7
0.1

0.4
0.4
0.3
-0.2
-0.3

0.5
0.5
0.9
-0.3
-0.2

0.2
0.6
-0.1
-0.5
0.1

-0.1
0.6
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

0.3
0.6
-0.1
-0.7
0.1

0.4
0.4
-0.1
-0.7
0.1

-0.2
0.6
-0.1
-0.7
0.1

-0.4
0.6
-0.1
-0.7
0.1

-0.3
0.5
-0.1
-0.7
0.1

0.2
0.6
-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Encoder:
Builds up
sentence
meaning

Source
sentence

Translation
generated

Feeding in
last word

Decoder

Conditioning =
Bottleneck

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layer i + 1

3

NMT: the first big success story of NLP Deep Learning

4

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

• 2014: First seq2seq paper published [Sutskever et al. 2014]

• 2016: Google Translate switches from SMT to NMT – and by 2018 everyone has

• This is amazing!
• SMT systems, built by hundreds of engineers over many years, outperformed by

NMT systems trained by small groups of engineers in a few months

The final piece: the bottleneck problem in RNNs

En
co

de
r R

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

Decoder RN
N

Target sentence (output)

Problems with this architecture?

Encoding of the
source sentence.

5

1. Why attention? Sequence-to-sequence: the bottleneck problem

En
co

de
r R

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

Decoder RN
N

Target sentence (output)

Encoding of the
source sentence.

This needs to capture all
information about the

source sentence.
Information bottleneck!

6

Issues with recurrent models: Linear interaction distance

• O(sequence length) steps for distant word pairs to interact means:
• Hard to learn long-distance dependencies (because gradient problems!)
• Linear order of words is “baked in”; we already know linear order isn’t the

right way to think about sentences…

7

The waschef who …

Info of chef has gone through
O(sequence length) many layers!

Issues with recurrent models: Lack of parallelizability

• Forward and backward passes have O(sequence length)
unparallelizable operations
• GPUs can perform a bunch of independent computations at once!
• But future RNN hidden states can’t be computed in full before past RNN

hidden states have been computed
• Inhibits training on very large datasets!

8

h1

0

1 n

hTh2

1

2

2

3

Numbers indicate min # of steps before a state can be computed

Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

• First, we will show via diagram (no equations), then we will show with equations

9

The starting point: mean-pooling for RNNs

10

• Starting point: a very basic way of ‘passing information from the encoder’ is to average

the movie a lotoverall I enjoyed

positive

Sentence
encoding

How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all

hidden states

Attention is weighted averaging, which lets you do lookups!

11

Attention is just a weighted average – this is very powerful if the weights are learned!

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es
dot product

12

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es
dot product

13

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es
dot product

14

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es
dot product

15

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

On this decoder timestep, we’re
mostly focusing on the first
encoder hidden state (”he”)

At
te

nt
io

n
di

st
rib

ut
io

n

Take softmax to turn the scores
into a probability distribution

16

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

Use the attention distribution to take a
weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

17

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
di

st
rib

ut
io

n
At

te
nt

io
n

sc
or

es

Attention
output

Concatenate attention output
with decoder hidden state, then
use to compute !𝑦!	as before

!𝑦!	

he

18

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

he

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

!𝑦#	

hit

19

Sometimes we take the
attention output from the
previous step, and also
feed it into the decoder
(along with the usual
decoder input). We do
this in Assignment 4.

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit

!𝑦$	

me

20

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me

!𝑦%	

with

21

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit with

!𝑦&	

a

me

22

Sequence-to-sequence with attention

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

Decoder RN
N

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me with a

!𝑦'	

pie

23

Attention: in equations

• We have encoder hidden states
• On timestep t, we have decoder hidden state
• We get the attention scores for this step:

• We take softmax to get the attention distribution for this step (this is a probability distribution and
sums to 1)

• We use to take a weighted sum of the encoder hidden states to get the attention output

• Finally we concatenate the attention output with the decoder hidden
state and proceed as in the non-attention seq2seq model

24

Attention is parallelizable, and solves bottleneck issues.

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.
• We saw attention from the decoder to the encoder; today we’ll think about

attention within a single sentence.
• Number of unparallelizable operations does not increase with sequence length.
• Maximum interaction distance: O(1), since all words interact at every layer!

embedding 0 0 0 0 0 0 0 0

h1 h2 hT

2 2 2 2 2 2 2 2attention

attention
1 1 1 1 1 1 1 1

All words attend
to all words in
previous layer;
most arrows here
are omitted

25

Attention is great!

• Attention significantly improves NMT performance
• It’s very useful to allow decoder to focus on certain parts of the source

• Attention provides a more “human-like” model of the MT process
• You can look back at the source sentence while translating, rather than needing to remember it all

• Attention solves the bottleneck problem
• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with the vanishing gradient problem
• Provides shortcut to faraway states

• Attention provides some interpretability
• By inspecting attention distribution, we see what the decoder was focusing on
• We get (soft) alignment for free!
• This is cool because we never explicitly trained an alignment system
• The network just learned alignment by itself

26

he hi
t

m
e

w
ith

a pi
e

il

a

m’

entarté

There are several attention variants

• We have some values and a query

• Attention always involves:
1. Computing the attention scores
2. Taking softmax to get attention distribution ⍺:

3. Using attention distribution to take weighted sum of values:

thus obtaining the attention output a (sometimes called the context vector)

27

There are
multiple ways

to do this

Attention variants

There are several ways you can compute from and :

• Basic dot-product attention:
• Note: this assumes . This is the version we saw earlier.

• Multiplicative attention: [Luong, Pham, and Manning 2015]
• Where is a weight matrix. Perhaps better called “bilinear attention”

• Reduced-rank multiplicative attention: 𝑒! = 𝑠" 𝑼"𝑽 ℎ! = (𝑼𝑠)"(𝑽ℎ!)
• For low rank matrices 𝑼 ∈ ℝ#×%(, 𝑽 ∈ ℝ#×%), 𝑘 ≪ 𝑑&, 𝑑'

• Additive attention: [Bahdanau, Cho, and Bengio 2014]
• Where are weight matrices and is a weight vector.
• d3 (the attention dimensionality) is a hyperparameter
• “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

28

More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

You’ll think about the relative
advantages/disadvantages of these in Assignment 4!

Remember this when we look
at Transformers next week!

http://ruder.io/deep-learning-nlp-best-practices/index.html
https://arxiv.org/pdf/1703.03906.pdf

Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

• However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute

a weighted sum of the values, dependent on the query.

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query)

attends to all the encoder hidden states (values).

29

Attention is a general Deep Learning technique

30

• More general definition of attention:
• Given a set of vector values, and a vector query, attention is a technique to compute

a weighted sum of the values, dependent on the query.

Intuition:
• The weighted sum is a selective summary of the information contained in the values,

where the query determines which values to focus on.
• Attention is a way to obtain a fixed-size representation of an arbitrary set of

representations (the values), dependent on some other representation (the query).

Upshot:
• Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!

Do we even need recurrence at all?

31

• Abstractly: Attention is a way to pass information from a sequence (𝑥) to a neural
network input. (ℎ#)
• This is also exactly what RNNs are used for – to pass information!
• Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass

information!

2014-2017ish
Recurrence

Lots of trial
and error

2021
??????

The building block we need: self attention

32

• What we talked about – Cross attention: paying attention to the input x to generate 𝑦#

En
co

de
r

RN
N

Source sentence (input)

<START>il a m’ entarté

At
te

nt
io

n
sc

or
es

At
te

nt
io

n
di

st
rib

ut
io

n

Attention
output

he hit me

!𝑦!	

wit
h

• What we need – Self attention: to generate 𝑦#, we need to pay attention to 𝑦$#

Self-Attention Hypothetical Example

33

Self-Attention: keys, queries, values from the same sequence

34

Let 𝒘!:#	be a sequence of words in vocabulary 𝑉, like Zuko made his uncle tea.

For each 𝒘$, let 𝒙$ = 𝐸𝒘𝒊, where 𝐸 ∈ ℝ&×|)| is an embedding matrix.

1. Transform each word embedding with weight matrices Q, K, V , each in ℝ&×&

2. Compute pairwise similarities between keys and queries; normalize with softmax

𝒆%& = 𝒒𝒊(𝒌𝒋 𝜶%& =
exp(𝒆%&)	

∑&* exp(𝒆%&()

3. Compute output for each word as weighted sum of values

𝒒% = 𝑄𝒙𝒊 (queries) 𝒌% = 𝐾𝒙𝒊 (keys) 𝒗% = 𝑉𝒙𝒊 (values)

𝒐% =3
𝒋

𝜶%& 𝒗%

Barriers
• Doesn’t have an inherent

notion of order!

Barriers and solutions for Self-Attention as a building block

35

Solutions

Fixing the first self-attention problem: sequence order

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝒑$ ∈ ℝ&, for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the 𝑝$ are made of yet!
• Easy to incorporate this info into our self-attention block: just add the 𝒑$ to our inputs!
• Recall that 𝒙$ is the embedding of the word at index 𝑖. The positioned embedding is:

!𝒙! = 𝒙! + 𝒑!
In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

36

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

• Pros:
• Periodicity indicates that maybe “absolute position” isn’t as important
• Maybe can extrapolate to longer sequences as periods restart!

• Cons:
• Not learnable; also the extrapolation doesn’t really work!

Position representation vectors through sinusoids

cos(𝑖/10000'∗&/%)
𝒑$	 =

sin(𝑖/10000'∗&/%)

sin(𝑖/10000'∗
%
'/%)

cos(𝑖/10000'∗
%
'/%)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

Di
m

en
sio

n

37

• Learned absolute position representations: Let all 𝑝$ be learnable parameters!
Learn a matrix 𝒑 ∈ ℝ&×#, and let each 𝒑$ be a column of that matrix!

• Pros:
• Flexibility: each position gets to be learned to fit the data

• Cons:
• Definitely can’t extrapolate to indices outside 1,… , 𝑛.

• Most systems use this!

• Sometimes people try more flexible representations of position:
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

Position representation vectors learned from scratch

38

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning! It’s all just weighted
averages

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

39

Adding nonlinearities in self-attention

• Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors
(Why? Look at the notes!)

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚! = 𝑀𝐿𝑃 output! 	
 =	𝑊' ∗ ReLU 𝑊&	output! + 𝑏& + 𝑏'

The

𝑤! 𝑤+
chef

𝑤,
who

𝑤#
food

…
self-attention

Intuition: the FF network processes the result of attention

FF FF FF FF

…
self-attention

FF FF FF FF

40

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence
• Like in machine translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

41

Masking the future in self-attention

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

The

chef

who

[START]

For encoding
these words

The chef who
[START]

We can look at these
(not greyed out) words

𝑒#$ =	 %
𝑞#%𝑘$, 𝑗 ≤ 𝑖
−∞, 𝑗 > 𝑖

−∞

−∞−∞

−∞−∞ −∞

42

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence
• Like in machine translation
• Or language modeling

Barriers and solutions for Self-Attention as a building block

Solutions
• Add position representations to

the inputs

• Easy fix: apply the same
feedforward network to each self-
attention output.

• Mask out the future by artificially
setting attention weights to 0!

43

• Self-attention:
• the basis of the method.

• Position representations:
• Specify the sequence order, since self-attention

is an unordered function of its inputs.
• Nonlinearities:

• At the output of the self-attention block
• Frequently implemented as a simple feed-

forward network.
• Masking:

• In order to parallelize operations while not
looking at the future.

• Keeps information about the future from
“leaking” to the past.

Necessities for a self-attention building block:

44

Outline

1. From recurrence (RNN) to attention-based NLP models
2. The Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers

45

The Transformer Decoder

46

• A Transformer decoder is how
we’ll build systems like
language models.

• It’s a lot like our minimal self-
attention architecture, but
with a few more components.

• The embeddings and position
embeddings are identical.

• We’ll next replace our self-
attention with multi-head self-
attention.

Transformer Decoder

Recall the Self-Attention Hypothetical Example

47

Hypothetical Example of Multi-Head Attention

48

Sequence-Stacked form of Attention

• Let’s look at how key-query-value attention is computed, in matrices.
• Let 𝑋 = 𝑥!; … ; 𝑥# ∈ ℝ#×& be the concatenation of input vectors.
• First, note that 𝑋𝐾 ∈ ℝ#×&, 𝑋𝑄 ∈ ℝ#×&, 𝑋𝑉 ∈ ℝ#×&.
• The output is defined as output = 	softmax 𝑋𝑄 𝑋𝐾 - 𝑋𝑉 ∈∈ ℝ#×&.

= 𝑋𝑄𝐾+	𝑋+

∈ ℝ+×+

All pairs of
attention scores!

output ∈ ℝ,×%
=

𝐾+	𝑋+
𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾 -

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑋𝑄𝐾+	𝑋+softmax 𝑋𝑉

49

Multi-headed attention

• What if we want to look in multiple places in the sentence at once?
• For word 𝑖, self-attention “looks” where 𝑥$-𝑄-𝐾𝑥. is high, but maybe we want

to focus on different 𝑗 for different reasons?
• We’ll define multiple attention “heads” through multiple Q,K,V matrices

• Let, 𝑄ℓ, 𝐾ℓ, 𝑉ℓ ∈ ℝ
&×!", where ℎ is the number of attention heads, and ℓ ranges

from 1 to ℎ.
• Each attention head performs attention independently:

• outputℓ = 	softmax 𝑋𝑄ℓ𝐾ℓ-𝑋- ∗ 𝑋𝑉ℓ, where outputℓ ∈ ℝ&/1

• Then the outputs of all the heads are combined!
• output = output!; … ; output1 𝑌, where 𝑌 ∈ ℝ&×&

• Each head gets to “look” at different things, and construct value vectors
differently.50

Multi-head self-attention is computationally efficient

• Even though we compute ℎ many attention heads, it’s not really more costly.
• We compute 𝑋𝑄 ∈ ℝ#×&, and then reshape to ℝ#×1×&/1. (Likewise for 𝑋𝐾, 𝑋𝑉.)
• Then we transpose to ℝ1×#×&/1; now the head axis is like a batch axis.
• Almost everything else is identical, and the matrices are the same sizes.

51

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾 -

𝐾+	𝑋+

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

softmax 𝑋𝑉𝑋𝑄𝐾+	𝑋+ 𝑋𝑉

output ∈ ℝ,×%
=

𝑃
=

mix

∈ ℝ-×+×+

3 sets of all pairs of
attention scores!𝑋𝑄𝐾+	𝑋+=

Scaled Dot Product [Vaswani et al., 2017]

• “Scaled Dot Product” attention aids in training.
• When dimensionality 𝑑 becomes large, dot products between vectors tend to

become large.
• Because of this, inputs to the softmax function can be large, making the

gradients small.
• Instead of the self-attention function we’ve seen:

outputℓ = 	softmax 𝑋𝑄ℓ𝐾ℓ-𝑋- ∗ 𝑋𝑉ℓ

• We divide the attention scores by 𝑑/ℎ, to stop the scores from becoming large
just as a function of 𝑑/ℎ (The dimensionality divided by the number of heads.)

outputℓ = 	softmax 23ℓ4ℓ
2

&/1
∗ 𝑋𝑉ℓ

52

The Transformer Decoder

53

• Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
optimization tricks that end up
being :
• Residual Connections
• Layer Normalization

• In most Transformer diagrams,
these are often written
together as “Add & Norm”

Transformer Decoder

The Transformer Encoder: Residual connections [He et al., 2016]

• Residual connections are a trick to help models train better.
• Instead of 𝑋($) = Layer(𝑋 $7!) (where 𝑖 represents the layer)

• We let 𝑋($) = 𝑋($7!) + 	Layer(𝑋 $7!) (so we only have to learn “the residual”
from the previous layer)

• Gradient is great through the residual
connection; it’s 1!

• Bias towards the identity function!

𝑋(#'() Layer 𝑋(#)

𝑋(#'() Layer 𝑋(#)+

[no residuals] [residuals]

[Loss landscape visualization,
Li et al., 2018, on a ResNet]54

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

• Layer normalization is a trick to help models train faster.
• Idea: cut down on uninformative variation in hidden vector values by normalizing

to unit mean and standard deviation within each layer.
• LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

• Let 𝑥 ∈ ℝ& be an individual (word) vector in the model.

• Let 𝜇 = ∑.8!& 𝑥.; this is the mean; 𝜇 ∈ ℝ.

• Let 𝜎 = !
&
	∑.8!& 𝑥. − 𝜇

+
; this is the standard deviation; 𝜎 ∈ ℝ.

• Let 𝛾 ∈ ℝ& and 𝛽 ∈ ℝ& be learned “gain” and “bias” parameters. (Can omit!)
• Then layer normalization computes:

output =
𝑥	 − 𝜇
𝜎 + 𝜖

∗ 𝛾 + 𝛽
Normalize by scalar
mean and variance

Modulate by learned
elementwise gain and bias55

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Decoder

56

• The Transformer Decoder is a
stack of Transformer Decoder
Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• That’s it! We’ve gone through
the Transformer Decoder.

Transformer Decoder

The Transformer Encoder

57

• The Transformer Decoder
constrains to unidirectional
context, as for language
models.

• What if we want bidirectional
context, like in a bidirectional
RNN?

• This is the Transformer
Encoder. The only difference is
that we remove the masking
in the self-attention.

Transformer DecoderNo Masking!

The Transformer Encoder-Decoder

58

• Recall that in machine
translation, we processed the
source sentence with a
bidirectional model and
generated the target with a
unidirectional model.

• For this kind of seq2seq
format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer
Encoder.

• Our Transformer Decoder is
modified to perform cross-
attention to the output of the
Encoder.

Cross-attention (details)

• We saw that self-attention is when keys,
queries, and values come from the same
source.

• In the decoder, we have attention that
looks more like what we saw last week.

• Let ℎ!, … , ℎ# be output vectors from the
Transformer encoder; 𝑥$ ∈ ℝ&

• Let 𝑧!, … , 𝑧# be input vectors from the
Transformer decoder, 𝑧$ ∈ ℝ&

• Then keys and values are drawn from the
encoder (like a memory):
• 𝑘$ = 𝐾ℎ$, 𝑣$ = 𝑉ℎ$.

• And the queries are drawn from the
decoder, 𝑞$ = 𝑄𝑧$.

59

ℎ_, … , ℎ`

𝑧7, … , 𝑧8

Outline

1. From recurrence (RNN) to attention-based NLP models
2. Introducing the Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers

61

Great Results with Transformers

[Vaswani et al., 2017]

Not just better Machine
Translation BLEU scores

Also more efficient to
train!

First, Machine Translation from the original Transformers paper!

[Test sets: WMT 2014 English-German and English-French]62

Great Results with Transformers

[Liu et al., 2018]; WikiSum dataset

Transformers all the way down.

Next, document generation!

The old standard

63

https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

[Liu et al., 2018]

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.
Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate
benchmark, for example:

All top models are
Transformer (and
pretraining)-based.

More results Thursday when we discuss pretraining.
64

https://arxiv.org/pdf/1801.10198.pdf

Outline

1. From recurrence (RNN) to attention-based NLP models
2. Introducing the Transformer model
3. Great results with Transformers
4. Drawbacks and variants of Transformers

65

• Quadratic compute in self-attention (today):
• Computing all pairs of interactions means our computation grows

quadratically with the sequence length!
• For recurrent models, it only grew linearly!

• Position representations:
• Are simple absolute indices the best we can do to represent position?
• Relative linear position attention [Shaw et al., 2018]
• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

66

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑛+𝑑 , where 𝑛 is the
sequence length, and 𝑑 is the dimensionality.

Quadratic computation as a function of sequence length

67

= 𝑋𝑄𝐾+	𝑋+

∈ ℝ+×+

Need to compute all
pairs of interactions!
 𝑂 𝑛#𝑑𝐾+	𝑋+

𝑋𝑄

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎 (though for large language models it’s much larger!).
• So, for a single (shortish) sentence, 𝑛 ≤ 30; 𝑛+ ≤ 𝟗𝟎𝟎.
• In practice, we set a bound like 𝑛 = 512.
• But what if we’d like 𝒏 ≥ 𝟓𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇+ all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Work on improving on quadratic self-attention cost

68

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

nc
e

tim
e

(s
)

Sequence length / batch size

https://arxiv.org/pdf/2006.04768.pdf

• As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

• In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.
• The cheaper methods tend not to work as well at scale.

• So, is there no point in trying to design cheaper alternatives to self-attention?
• Or would we unlock much better models with much longer contexts (>100k

tokens?) if we were to do it right?

Do we even need to remove the quadratic cost of attention?

69

Do Transformer Modifications Transfer?

70

• "Surprisingly, we find that most modifications do not meaningfully improve
performance."

• Pretraining on Tuesday!
• Good luck on assignment 4!
• Remember to work on your project proposal!

Parting remarks

71

