Natural Language Processing
with Deep Learning

CS224N/Ling284

P

Tatsunori Hashimoto

Lecture 8: Self-Attention and Transformers

Lecture Plan

1. From recurrence (RNN) to attention-based NLP models
2. The Transformer model

3. Great results with Transformers

4. Drawbacks and variants of Transformers

Reminders:

See the 2023 lecture notes for some bonus material

Assignment 4 due a week from today! Use Colab for the final training if you don’t have
a GPU.

Final project proposal out tonight, due Tuesday, Feb 14 at 4:30PM PST!

Please try to hand in the project proposal on time; we want to get you feedback
quickly!

http://web.stanford.edu/class/cs224n/readings/cs224n-self-attention-transformers-2023_draft.pdf

Last last lecture: Multi-layer RNN for machine translation

[Sutskever et al. 2014; Luong et al. 2015] The hidden states from RNN layer i
are the inputs to RNN layerj+1

Translation
protests escalat generated
Encoder:
Builds u
P Decoder
sentence
meaning
Source Die Proteste waren am Wochenende eskaliert <EOS> \jver Seeelg i
sentence last word

Conditioning =
Bottleneck

NMT: the first big success story of NLP Deep Learning

Neural Machine Translation went from a fringe research attempt in 2014 to the leading
standard method in 2016

2014: First seq2seq paper published [Sutskever et al. 2014]

2016: Google Translate switches from SMT to NMT — and by 2018 everyone has

B Microsoft &svsiran Google
BaiEe B2wmm= Tencentiil (S

 Thisis amazing!
e SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by small groups of engineers in a few months

The final piece: the bottleneck problem in RNNs

Encoding of the
source sentence.

Target sentence (output)

A

4 \

me with a pie <END>
= 9
o o o [[(@) (@) (@) (0] () (0] (@) S
o o |0 .0 | |0 SO _Sl0[10| _Jfof Jjo| (O] O Q.
xe. @ |0® o ||® 101 “lof 10| ‘1o “|o| |0 (0] @
S () () o () (@) (@) (@) (@) (0] (@) (@) -
c A =

il a m’ entarté <START> he hit me with a pie
N J
Y

Source sentence (input)

Problems with this architecture?

1. Why attention? Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.

This needs to capture all Target sentence (output)
information about the s A \
source sentence. with @ pie <END>
Information bottleneck! T T T T T T T
Z ®
o o] (o] (o] (@ ol (o] [o] [o] [e] [o] [eo 3
= o o] (o] | |@ Jol ol .ol o] .Jo| .Jo| Jo S
§e) e |O® @ 10 101 1o “|Oo| 1o “|lo| “|O o @
S e (o |o | |® o] |o] [o] |of |of |of |o =
c A =
il a m’ entarté <START> he hit me with a pie
\ J
Y

Source sentence (input)

Issues with recurrent models: Linear interaction distance

e O(sequence length) steps for distant word pairs to interact means:
e Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; we already know linear order isn’t the
right way to think about sentences...

—>... —_— CQQ—> —>

T
i_,i_. ——>000 _— — 000 —

The chef who ...

Info of chef has gone through
I O(sequence length) many layers!
7

Issues with recurrent models: Lack of parallelizability

e Forward and backward passes have O(sequence length)
unparallelizable operations

e GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

—>000 —_— — 000 ——>I

T
—>000 ——> —> 000 —>i
1

Numbers indicate min # of steps before a state can be computed

Attention

e Attention provides a solution to the bottleneck problem.

e Coreidea: on each step of the decoder, use direct connection to the encoder to focus
on a particular part of the source sequence

/\»\J_/

e First, we will show via diagram (no equations), then we will show with equations

The starting point: mean-pooling for RNNs

positive How to compute
sentence encoding?

Usually better:
Take element-wise
max or mean of all
hidden states

Sentence
encoding

\ 4
Vv

—>1 0000

A4

—> 0000

A4
A4

—> 0000®

A\

> seo00@

—> 0000

| |

overall enjoyed t movie lot

e Starting point: a very basic way of ‘passing information from the encoder’ is to average

10

Attention is weighted averaging, which lets you do lookups!

Attention is just a weighted average — this is very powerful if the weights are learned!

In attention, the matches all keys softly, In a lookup table, we have a table of keys
to a weight between 0 and 1. The keys’ values that map to values. The matches
are multiplied by the weights and summed. one of the keys, returning its value.

k I
keys values Weighted €ys values

Sum 1

ki i - Y

b 2

k2 v2 query !

query output ; .

C v
qg k3 v3 ZH output
4 y d vd —> v4

Y
e v5

k5 v5
11

Sequence-to-sequence with attention

Core idea: on each step of the decoder, use direct connection to the encoder to focus on a
particular part of the source sequence
dot product

Attention
scores

&
© o) ol (o ® o) o]
EE o .o (o .|® 5| O Q.
S & o) o ‘|lo| @ lo @®
S @ o |o ® o -

P

il a m’ entarté <START>
\ J
Y

1 Source sentence (input)

Sequence-to-sequence with attention

dot product

Attention
scores

&
© o) ol (o ® o) o]
EE o .o (o .|® 5| O Q.
S & o) o ‘|lo| @ lo @®
S @ o |o ® o -

2

il a m’ entarté <START>
\ J
Y

13 Source sentence (input)

Sequence-to-sequence with attention

dot product

Attention
scores

w)
o ()
) (<) (<) (<) o 9
EE ol |0 (o] .|o® =3
O (<] (<] (*] (<) @
T (<) (<) (<) o jzo
il a m’ entarté <START>
L v J

14 Source sentence (input)

Sequence-to-sequence with attention

dot product

Attention
scores

w)
o (]
) (<) (<] (<) (<) 9
EE ol |0 (o] .|o® =3
O & (<] (<] (*] (*] @
o (<) (<] (<) (<) -
pd
il a m’ entarté <START>
L J
Y

15 Source sentence (input)

Sequence-to-sequence with attention

On this decoder timestep, we're
mostly focusing on the first
{ / encoder hidden state ("he”)

Take softmax to turn the scores
into a probability distribution

Attention
distribution

Attention
scores

w)
o (]
) (<) (<] (<) (<) S
EE ol |0 (o] .|o® =3
o (<] (<] (*] (*] @
o (<) (<] (<) (<) -

pd

il a m’ entarté <START>
L J
Y

16 Source sentence (input)

Sequence-to-sequence with attention

17

Attention
distribution

Attention

Encoder

scores

RNN

Attention
output

-
<

(<) (<) (<) o
| |© N (<) (<)
(<] (<] (*] (<)
(<) (<) (<) o
il a m’ entarté
L J

Y
Source sentence (input)

<START>

Use the attention distribution to take a

weighted sum of the encoder hidden states.

The attention output mostly contains
information from the hidden states that
received high attention.

NNY J2p023(

Sequence-to-sequence with attention

Attention he
output

Concatenate attention output
P, with decoder hidden state, then
A use to compute y; as before

o,
.
o
.
o
,,,,
o o
.
.
o
Y
.
o

Attention
distribution

Attention
scores
—

&
] 0 o| [o o) o) Q
EE o .o (o .|® 5| O Q.
S o o) o[“|e® 1o @
S o o o) o o -

2

il a m’ entarté <START>
\)
Y

18 Source sentence (input)

Sequence-to-sequence with attention

Attention hit
output

Attention
distribution
—

I3

[1

1
[1

Attention
scores

w)
— D
9 _ o] (o] (o] |[e@ o] [o s
S = : > : >-: > : > 8 8 Sometimes we take the %
5) (])) o) 0) attention output from the -
previous step, and also %
/ feed it into the decoder
il a m’ entarté <START> he (along with the usual
\)y decoder input). We do
Y this in Assignment 4.

19 Source sentence (input)

Decoder RNN
—M

g <« < 0000 |c—— =

n N\

O N

g 0000 |c—— ¥

[= A

e ~

- 0000 |«—— _Wn

t N r/\\u

©

i -

.n .j —

W S = £ 5
= a O PY Y Y) m— o

Q o5 A S =

(&) £ o (]
< o

C A m— 0000 < ¢ <

e N V. +—

S o

= e000|<—— =& o

Q / <

v 3

| = %)

o f 0000)<—— = |

..ﬂ. —— —— ——

Mw uonNQLIISIp S2400S NNY

c UuoIIUdY UOoIURNY J9pPOodU]

Q

=

O

Q

(V] Q

Decoder RNN

}
..hl. e P Q
T &< 0000)k—— ¢
0
0000 |— =
n N
O
e 0000 |c—— &
c A
~
.m 0000 c— 3
HE 7} .._m
(g0)
N -
4= ~
o mmm c ,..ol.w =
S S5 -
=R Y — eo000)—— S | 2
Q o5 A o =
c +~ O w
= = { 0000)< - Y <
)) =
u Q
= e000|<—— =& o
Q \ =
=
n“u o /. _ ..w
S {l< O< 0000)<—— = |
..ﬂ. —— —— ——
Mw uonNguasIp SaJ0ds NNY
c UoIlUS1Y UoIURY J3podu]
)
=
o
()]
(V) ~

Decoder RNN

}
Ny
S <— < Oﬁv)nuo A M
0
0000)c—— ¢
0000 |— =
n N
) N
= 0000 |c—— ¥
c A
e ~
- 0000 c— 3
I~
ofd N r/\\u
©
N o
e N
o mn m - /..Drl.w -—w_.
= = g | ee@0)<—— 2 Q
Q TiR=1 B A o =
(& M O v
c { 0000 < <
e N V. ..m
u Q
= e000|<—— =& o
Q »N \ =
>
(V)] o
& fle O< 0000)c—— = | V
..ﬂ. —— —— ——
Mw uollnNquIlsIp S3403S NNY
c uoIlUallyY UOIU3Y J3podud
Q
=
o
Q
() N

Decoder RNN
—M

S <« 0< Q000 |c—— ©
\ﬁ N
Ny
0000)k—— %
N
0000)c—— ¢
0000 |c— =
n AN
) N
= 0000 |c— ¥
c A
..n.w 0000 c— 3
I~
o) N r/\\u
(©
i -
= N
o mn m - /..Drl.w -—w_.
3 E=R I N w— e000|<—— S Q
Q o5 n S =
Q 2ol S
c .. O 0000 <
e N V. +—
S N\ o
= e000|<—— =& o
T, \ =
O i< O< Q000 |c-— = _
..ﬂ. —— —— ——
Mw uollNQISIp S9402S NNY
c UOIlU3YY UOIULNY J9pOodUuT
Q
=
(on
Q
() X

Attention: in equations

¢ We have encoder hidden states h1,...,hy € R"
e On timestep t, we have decoder hidden state s; € R”
e We get the attention scores e’ for this step:

el =[s'hy,...,sthy] € RY

e We take softmax to get the attention distribution o' for this step (this is a probability distribution and
sums to 1)

o' = softmax(e’) € RY

e Weuse a'totakea weighted sum of the encoder hidden states to get the attention output ay
N
a; = Z ath; € R"
i=1

e Finally we concatenate the attention output a; with the decoder hidden
state s: and proceed as in the non-attention seq2seq model

" las; s¢] € R2h

Attention is parallelizable, and solves bottleneck issues.

e Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

 We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.

e Number of unparallelizable operations does not increase with sequence length.
e Maximum interaction distance: O(1), since all words interact at every layer!

to all words in

— |
attention previous layer;
— most arrows here

embedding are omitted

h1 h2 hT

: All words attend
attention ~

25

Attention is great! p ‘3

A
e Attention significantly improves NMT performance /

* |It’s very useful to allow decoder to focus on certain parts of the source
e Attention provides a more “human-like” model of the MT process

* You can look back at the source sentence while translating, rather than needing to remember it all
e Attention solves the bottleneck problem

e Attention allows decoder to look directly at source; bypass bottleneck

e Attention helps with the vanishing gradient problem
e Provides shortcut to faraway states

e Attention provides some interpretability
e By inspecting attention distribution, we see what the decoder was focusing on

with

hit
me
a
pie

e We get (soft) alignment for freel]

;

e This is cool because we never explicitly trained an alignment system
"

* The network just learned alignment by itself
entarté

26

There are several attention variants

e We have some values hq,...,hy € R% and a query s € R%

e Attention always involves: There are

1. Computing the attention scores e € RN «—— multiple ways
to do this

2. Taking softmax to get attention distribution o:

o = softmax(e) € RY

3. Using attention distribution to take weighted sum of values:

N
a = Zazhz = R

=1

thus obtaining the attention output a (sometimes called the context vector)

27

. . You’ll think about the relative
Attention variants advantages/disadvantages of these in Assignment 4!
There are several ways you can compute e € RY from hi,...,hxy € R% and s € R% :

Basic dot-product attention: €; = sThZ- cR

* Note: this assumes di = dz2. This is the version we saw earlier.

Multiplicative attention: e; = s Wh; € R [Luong, Pham, and Manning 2015]
e Where W € R%2*% js 3 weight matrix. Perhaps better called “bilinear attention”

Reduced-rank multiplicative attention: e; = sT(UTV)h; = (Us)T (Vh;) | Remember this when we look

: kexd exd at Transformers next week!
e For low rank matrices U € R*"%2, V € R**"1, k < d4,d,

Additive attention: e; = v’ tanh(Wih; + Was) € R [Bahdanau, Cho, and Bengio 2014]
e Where W; € R%xd1 W, ¢ R4%42 gre weight matrices and v € R% s a weight vector.

* d; (the attention dimensionality) is a hyperparameter
o “Additive” is a weird/bad name. It’s really using a feed-forward neural net layer.

More information: “Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017, https://arxiv.org/pdf/1703.03906.pdf

28

http://ruder.io/deep-learning-nlp-best-practices/index.html
https://arxiv.org/pdf/1703.03906.pdf

Attention is a general Deep Learning technique

e We've seen that attention is a great way to improve the sequence-to-sequence model
for Machine Translation.

e However: You can use attention in many architectures
(not just seq2seq) and many tasks (not just MT)

e More general definition of attention:

e Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

e We sometimes say that the query attends to the values.

e For example, in the seq2seq + attention model, each decoder hidden state (query)
attends to all the encoder hidden states (values).

29

Attention is a general Deep Learning technique

e More general definition of attention:

e Given a set of vector values, and a vector query, attention is a technique to compute
a weighted sum of the values, dependent on the query.

Intuition:

* The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

e Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Upshot:

e Attention has become the powerful, flexible, general way pointer and memory

manipulation in all deep learning models. A new idea from after 2010! From NMT!
30

Do we even need recurrence at all?

e Abstractly: Attention is a way to pass information from a sequence (x) to a neural
network input. (h)

e This is also exactly what RNNs are used for — to pass information!
e Can we just get rid of the RNN entirely? Maybe attention is just a better way to pass

information!
I"/ Lots of trial ‘
i« i» and error
2014-2017ish 2021

Recurrence 2?77?77

31

The building block we need: self attention

 What we talked about — Cross attention: paying attention to the input x to generate y;

e What we need — Self attention: to generate y;, we need to pay attention to y;

32

Self-Attention Hypothetical Example

attention
weights
for
I “learned”
B I B

went to Stanford CS 224n and learned
33

Self-Attention: keys, queries, values from the same sequence

Let w,.,, be a sequence of words in vocabulary V, like Zuko made his uncle tea.

For each w; , let x; = Ew;, where E € RVl is an embedding matrix.
1. Transform each word embedding with weight matrices Q, K, V, each in R%*¢
= Qx; kk; = Kx; (keys) v; = Vx; (values)
2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
2. exp(e;r)

— T
eij = q; i

j @ij =

3. Compute output for each word as weighted sum of values

0;=) ;v
0i=2aijvi ‘ : l] l
j J

34

Barriers and solutions for Self-Attention as a building block

Barriers Solutions

e Doesn’t have an inherent
notion of order!

Fixing the first self-attention problem: sequence order

e Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

e Consider representing each sequence index as a vector

p; € R%, fori € {1,2,...,n} are position vectors

e Don’t worry about what the p; are made of yet!
e Easy to incorporate this info into our self-attention block: just add the p; to our inputs!
e Recall that x; is the embedding of the word at index i. The positioned embedding is:

~ In deep self-attention

Xi = X T Di networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add...

36

Position representation vectors through sinusoids

e Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

(sin(i/100002*1/) AL
cos(i/100002*1/4) e ‘
p: = :
. £
sin(i/lOOOOZ*%/d) B
\COS(i/l()OOOZ*E/d)/ Index in the sequence
e Pros:

e Periodicity indicates that maybe “absolute position” isn’t as important

* Maybe can extrapolate to longer sequences as periods restart!
e Cons:

* Not learnable; also the extrapolation doesn’t really work!

37 Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position representation vectors learned from scratch

Learned absolute position representations: Let all p; be learnable parameters!
Learn a matrix p € R**™, and let each p; be a column of that matrix!

Pros:

 Flexibility: each position gets to be learned to fit the data

Cons:
e Definitely can’t extrapolate to indices outside 1, ..., n.

Most systems use this!

e Sometimes people try more flexible representations of position:
e Relative linear position attention [Shaw et al., 2018]

e Dependency syntax-based position [Wang et al., 2019

38

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
e Doesn’t have an inherent . * Add position representations to
notion of order! the inputs

e No nonlinearities for deep
learning! It’s all just weighted
averages

Adding nonlinearities in self-attention

e Note that there are no elementwise

nonlinearities in self-attention; !] I]
stacking more self-attention layers FF FF FF FF
just re-averages value vectors T 1 ! !

(Why? Look at the notes!)

e Easy fix: add a feed-forward network FF FF FF FF
to post-process each output vector. I 1 " !
self-attention
m; = MLP (output;) oo
= W2 * ReLU(Wl outputi + bl) + b2 W]_ W2 W3 WTl
The chef who food

Intuition: the FF network processes the result of attention

40

Barriers and solutions for Self-Attention as a building block

Barriers Solutions
e Doesn’t have an inherent . * Add position representations to
notion of order! the inputs
e No nonlinearities for deep e Easy fix: apply the same
learning magic! It’s all just > feedforward network to each self-
weighted averages attention output.

e Need to ensure we don’t
“look at the future” when
predicting a sequence

e Like in machine translation
* Or language modeling

41

Masking the future in self-attention

42

To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

We can look at these
(not greyed out) words

. [START]
At every timestep, we could
change the set of keys and u
queries to include only past The
words. (Inefficient!) For encoding
these words
o _J chef
To enable parallelization, we
mask out attention to future
words by setting attention who
scores to —oo. qiTkj,j <i
el-j — -

—00,j > 1

Barriers and solutions for Self-Attention as a building block

Barriers

e Doesn’t have an inherent
notion of order!

e No nonlinearities for deep
learning magic! It’s all just
weighted averages

e Need to ensure we don’t
“look at the future” when
predicting a sequence

* Like in machine translation

* Or language modeling

43

Solutions

Add position representations to
the inputs

Easy fix: apply the same
feedforward network to each self-
attention output.

Mask out the future by artificially
setting attention weights to O!

Necessities for a self-attention building block:

44

Self-attention:
e the basis of the method.
Position representations:
* Specify the sequence order, since self-attention

is an unordered function of its inputs. E kY,
Nonlinearities: § =
e At the output of the self-attention block S %
* Frequently implemented as a simple feed- 5 §
forward network. § ©

Masking:

* In order to parallelize operations while not
looking at the future.

e Keeps information about the future from
“leaking” to the past.

Probabilities

Softmax
N
Linear
N

Feed-Forward

)

Masked Self-
Attention

/w Block

Add Position
Embeddings

T

Embeddings
Inputs

Outline

The Transformer model

W

The Transformer Decoder

46

A Transformer decoder is how
we’ll build systems like
language models.

It’s a lot like our minimal self-
attention architecture, but
with a few more components.

The embeddings and position
embeddings are identical.

We’'ll next replace our self-
attention with multi-head self-
attention.

Masked Multi-
Head Attention

Add Position
Embeddings

Embeddings

Transformer Decoder

Recall the Self-Attention Hypothetical Example

attention
weights
for
I “learned”
B I B

went to Stanford CS 224n and learned
47

Hypothetical Example of Multi-Head Attention

I 48

Attention head 1
attends to entities

V.V V Vv
K k k Kk

I

went

I

to Stanford

went

Vv
K

CS

Y
K

224n

to

g
\% \%
Kk Kk
and learned
Stanford

Attention head 2 attends to
syntactically relevant words

q
VV V V V V VvV vV

k k k k Kk k k Kk

I went to Stanford CS 224n and learned

CS 224n and learned

Sequence-Stacked form of Attention

e Let’s look at how key-query-value attention is computed, in matrices.
o LetX = [xq;...;x,] € R™*4 phe the concatenation of input vectors.

e First, note that XK € R™*¢, XQ € R™*¢, XV € R™*¢,
* The output is defined as output = softmax(XQ(XK)T)XV ee R™*¢,

First, take the query-key dot All pairs of
products in one matrix X0 = XxQKTXT attention scores!
T . i T
multiplication: XQ (XK) KT xT e RN
Next, softmax, and ()
compute the weighted softmax| xokTxT | xv =
average with another
output € R™*¢

matrix multiplication. \ /
49

Multi-headed attention

50

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xl-TQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp, Vp € Rdxﬁ, where h is the number of attention heads, and € ranges

from 1 to h.

Each attention head performs attention independently:

e output, = softmax(XQ,K, X") * XV,, where output, € R*/"
Then the outputs of all the heads are combined!

* output = [outputy; ...; output,]Y, where Y € R%*4

Each head gets to “look” at different things, and construct value vectors
differently.

Multi-head self-attention is computationally efficient

e Even though we compute h many attention heads, it’s not really more costly.
e We compute XQ € R™4, and then reshape to R™*"*a/h_(Likewise for XK, XV .)
e Then we transpose to R"™™X@/h. now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

First, take the query-key dot 3 sets of all pairs of
products in one matrix X0 — XQK'XxT attention scores!

multiplication: XQ(XK)T KT xT e R3Xnxn

Next, softmax, and ()
compute the weighted softmax XOKTXT | xy =

average with another p
matrix multiplication. \ /

output € R™*¢

51 mixX

Scaled Dot Product [Vaswani et al., 2017]

52

“Scaled Dot Product” attention aids in training.

When dimensionality d becomes large, dot products between vectors tend to
become large.

e Because of this, inputs to the softmax function can be large, making the
gradients small.

Instead of the self-attention function we’ve seen:

output, = softmax(XQ,K, X ") x XV,
We divide the attention scores by /d/h, to stop the scores from becoming large
just as a function of d /h (The dimensionality divided by the number of heads.)

. XQ{)KJXT)
output, = softmax(Jan * XV,

The Transformer Decoder

Add & Norm
e Now that we’ve replaced self-
attention with multi-head self-
attention, we’ll go through two
. . . . Add & Norm
optimization tricks that end up
Masked Multi-

being : :
Head Attention

* Residual Connections [
e Layer Normalization

 |In most Transformer diagrams, Add Position
these are often written Embeddings
together as “Add & Norm” Embeddings

Transformer Decoder

53

The Transformer Encoder: Residual connections [He et al., 2016]

e Residual connections are a trick to help models train better.

e Instead of X = Layer(X“~1) (where i represents the layer)

x@-1 x @

Layer

e Welet X® = XD 4 Jayer(X“—1) (so we only have to learn “the residual”
from the previous layer)

XD] Layer @ X

* Gradient is great through the residual
connection; it’s 1!
» Bias towards the identity function! [no residuals] [residuals]

[Loss landscape visualization,
54 Li et al., 2018, on a ResNet]

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1712.09913.pdf

The Transformer Encoder: Layer normalization [Ba et al., 2016]

e Layer normalization is a trick to help models train faster.

e |dea: cut down on uninformative variation in hidden vector values by normalizing
to unit mean and standard deviation within each layer.

e LayerNorm’s success may be due to its normalizing gradients [Xu et al., 2019]

o Let x € R? be an individual (word) vector in the model.

e letu = Zj-lzlxj; this is the mean; u € R.

2
e leto = \/2 Z?zl(xj — ,u) : this is the standard deviation; o € R.

e Lety € R%and B € R? be learned “gain” and “bias” parameters. (Can omit!)
e Then layer normalization computes:

X —

output = *Y + [

o+ €
Normalize by scalar /'\/_ '\ Modulate by learned

- mean and variance elementwise gain and bias

https://arxiv.org/abs/1607.06450
https://papers.nips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

The Transformer Decoder

56

e The Transformer Decoderis a
stack of Transformer Decoder
Blocks.

e Each Block consists of:
 Self-attention
* Add & Norm
e Feed-Forward
* Add & Norm

e That’s it! We've gone through
the Transformer Decoder.

Repeat for number

of encoder blocks

Probabilities

Softmax
N
Linear
N

Add & Norm
N

Feed-Forward

T

ﬁ

Add & Norm
N
Masked Multi-

Head Attention

w Block

Add Position
Embeddings

Embeddings

Decoder Inputs

The Transformer Encoder Probabilities

57

Softmax
AN
The Transformer Decoder LSt
constrains to unidirectional N
context, as for language Add & Norm
models. . i
. o . 2L Feed-Forward
What if we want bidirectional £ 8 28
. D O
context, like in a bidirectional e |
ol Add & Norm
RNN? " g / ? S
This is the Transformer S G rl”t'tte"n';'ii?‘d
Encoder. The only difference is @ ©

that we remove the masking (w Block

in the self-attention. |
Add Position

. Embeddings
No Masking! T

Embeddings

Decoder Inputs

Probabilities

The Transformer Encoder-Decoder softma
Linear
. . N
e Recall that in machine ndd & Norm
translation, we processed the N
source sentence with a FERERFERETE
bidirectional model and T
. Add & Norm
generated the target with a Add & Norm 2N
idirectional model * e
uni) Feed-Forward LS
e For this kind of seg2seq 20 j
format, we often use a Add & Norrm Add & Norm
Transformer Encoder-Decoder. T a— Masked Multi-

Attention Head Attention

e We use a normal Transformer w
Encoder. w S | Block

e Qur '-I'r-ansformer Decoder is Add PsiiGn éﬁbzgsﬁoz
modified to perform cross- Embe,]o\ldings 3 9
attention to the output of the Embeddings Embeddings
Encoder.

58 Encoder Inputs Decoder Inputs

Cross-attention (details)

59

We saw that self-attention is when keys,
queries, and values come from the same
source.

In the decoder, we have attention that
looks more like what we saw last week.

Add & Norm
Add & Norm AN
Let h4, ..., h,; be output vectors from the N blult1-H.ead
ttention
Transformer encoder; x; € R% FoGEHFaIEE 9
. ¢ (Zl’ LR | Zn
Let z4, ..., z,, be input vectors from the dd & Norm N N
N
Transformer decoder, z; € R? M - TG LU
: Head Attention
Then keys and values are drawn from the Attention w
encoder (like a memory): w ek | Block
| -
* kj = Kh;, v; =Vh,. Add Position Add Position
. Embeddings Bl EAREE
And the queries are drawn from the
Embeddings

dECOder, qi — QZl" Embeddings

Encoder Inputs Decoder Inputs

Outline

Great results with Transformers

W

61

Great Results with Transformers

First, Machine Translation from the original Transformers paper!

Mode] BLEU Training Cost (FLOPs)
oce EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 1020
GNMT + RL [38] 24.6 39.92 2.3-10" 1.4-10%°
ConvS2S [9] 25.16 40.46 9.6-10% 1.5-102%
MOoE [32] 26.03 40.56 2.0-10" 1.2-.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%"
GNMT + RL Ensemble [38] 2630 41.16 1.8-1020 1.1-10%
ConvS2S Ensemble [9] 2636 41.29 7.7-10% 1.2.10%!

62 [Test sets: WMT 2014 English-German and English-French] [Vaswani et al., 2017]

Great Results with Transformers

Next, document generation!

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 342
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L. = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L. = 11000 1.92871 37.9
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8
The old standard Transformers all the way down.

63 [Liu et al., 2018]; WikiSum dataset

https://arxiv.org/pdf/1801.10198.pdf

Great Results with Transformers

Before too long, most Transformers results also included pretraining, a method we’ll
go over on Thursday.

Transformers’ parallelizability allows for efficient pretraining, and have made them
the de-facto standard.

On this popular aggregate

Rank Name Model URL Score
benchmark, for example:
1 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 C}J. 90.8
2 HFLIFLYTEK MacALBERT + DKM 90.7
x G L U E + 3 Alibaba DAMO NLP StructBERT + TAPT E 90.6
+ 4 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6
All top models are

5 ERNIE Team - Baidu ERNIE g 904

Transformer (2d o~~~ ~— - 0000000000

. A
pretraining)-based. e U R

More results Thursday when we discuss pretraining. .
64 [Liu et al., 2018]

https://arxiv.org/pdf/1801.10198.pdf

Outline

1
2.
3.
4. Drawbacks and variants of Transformers

65

What would we like to fix about the Transformer?

e Quadratic compute in self-attention (today):

e Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

e For recurrent models, it only grew linearly!

e Position representations:
* Are simple absolute indices the best we can do to represent position?
e Relative linear position attention [Shaw et al., 2018]

e Dependency syntax-based position [Wang et al., 2019]

66

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Quadratic computation as a function of sequence length

* One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

» However, its total number of operations grows as O(n“d), where n is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XQK"XxT pairs of interactions!
KT XT e RIXT 0(n*d)

 Think of d as around 1, 000 (though for large language models it’'s much larger!).
* So, for a single (shortish) sentence, n < 30; n? < 900.
 |In practice, we set a bound like n = 512.

e But what if we’d liken = 50, 000? For example, to work on long documents?
I 67

Work on improving on quadratic self-attention cost

e Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O(T?) all-pairs self-attention cost?

* For example, Linformer [Wang et al., 2020]

Linear 120 F ——— Linformer, k=2048
f —e— Linformer, k=1024
- - —&— Linformer, k=512
Key idea: map the o — so |~ Linformer, k=256
- 1 t : c —-= Linformer, k=128
sequence length T }13 S Transformer
. . Attention ;
dimension to a lower- — . S 5|
. . \ ()] | —
dimensional space for prjocion [Proesin) 5
A 10 = —
values, keys i ' =] —+t —+t 3
’ Y Linom Linear]l Linear Ul et PSS SR S St = —_:f—_'_:__—:"—::*
V v/ V7 512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
v K Q

Sequence length / batch size

68

https://arxiv.org/pdf/2006.04768.pdf

Do we even need to remove the quadratic cost of attention?

69

As Transformers grow larger, a larger and larger percent of compute is outside
the self-attention portion, despit the quadratic cost.

In practice, almost no large Transformer language models use anything but the
quadratic cost attention we’ve presented here.

* The cheaper methods tend not to work as well at scale.
So, is there no point in trying to design cheaper alternatives to self-attention?

Or would we unlock much better models with much longer contexts (>100k
tokens?) if we were to do it right?

Do Transformer Modifications Transfer?

e "Surprisingly, we find that most modifications do not meaningfully improve
performance.”

Model Params Ops Step/s Early loss Finalloss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 1117 3.50 2.182 + 0.005 1.838 71.66 17.78 23.02 ‘ 26.62
GeLU MM 11T 217920008 1838 7579 17.86 2513
Swish 223M 1117 2.186 + 0.003 1.847 73.77 17.74 24.34
ELU 223M 1117 2.270 +0.007 1.932 67.83 16.73 23.02
GLU 223M 1117 2.174 £+ 0.003 1.814 74.20 17.42 2434
GeGLU 223M 1117 2.130 + 0.006 1.792 75.96 18.27 24.87
ReGLU 223M 1117 2.145 + 0.004 1.803 76.17 18.36 24.87
SeLU 2V 11T 231540004 1948 6876 1676 2275
SwiGLU MM 11T 212740003 1789 76.00 1820 24.34
LiGLU MM 11T 214950005 1798 7534 17.97 2434
Sigmoid MM 11T 220150019 1867 7431 1751 2302
Softplus 223M 1117 2.207 +0.011 1.850 72.45 17.65 24.34
RMS Norm 223M 1117 2.167 + 0.008 1.821 75.45 17.94 2407
Rezero 223M 1117 2.262 + 0.003 1.939 61.69 15.64 20.90 . . .
Resero + LayealNorm waM T 230006 188 T4z 1758 202 D ’I‘r f M d ﬁ t ’I\r f A I l t t
Reero + TOMS Nom 2200 1017 Saiioos s Tom 1me mos o ansiormer odlncations ansier Cross lmpilementations
Fixup 223M 1117 2.382 +0.012 2.067 58.56 14.42 23.02
. .
24 layers, dg 224M 1117 2.200 £ 0.007 1.843 74.89 17.75 25.13 ‘?
o and Applications?
8 layers, dy = 4608, H = 18 223M 1117 2.190 + 0.005 1.847 74.58 17.69 23.28
6 layers, d = 6144, H =24 223M 1117 2.201 £ 0.010 1.857 73.55 17.59 24.60
Block sharing 6M 1117 249720037 2164 6450 1453 2196 * o g7
i B4 b 0 lGiie L8 BN we n Sh N H Won Ch: YiT Will Fed
T ot el e oM 917 diosts 2w s atw 1os aran INaran un on un 1 1a 1ll1am reaus
beddings
Encoder only block sh: 170M 1117 3.68 2.298 +0.023 1.929 69.60 16.23 23.02 26.23
Decoder only block sharing 144M 1117 3.70 2.352 + 0.029 2.082 67.93 16.13 23.81 26.08 T
. . . .
Factorized Embedding 27M 94T 380 2208£0006 1855 7041 1592 2275 2650 h b lt F M h 1 M t T K h M lka T N h F d l
Fctorioed Gshared ombed- 2020 AT 392 232040010 1952 6360 168 222 | 204t Thibau evry 1cnae atena arisnma a n oa ledae
dings
Tied encoder/decoder in- 248M 1117 3.55 2.192 + 0.002 1.840 7L.70 17.72 24.34 26.49
put embeddings
Tied decoder input and out- 248M 1117 3.57 2.187 + 0.007 1.827 74.86 17.74 24.87 26.67 -t . . .
N Sh Zhenzh I Yangi Zh Wei I
Unichosbosiogs woM AT a3y adeoms iss oo ;s maas | s oam azeer enznon an anqi ou €1 L1
Adaptive input embeddings 204M 997 355 22500002 189 6657 1621 2407 | 26.66
Adaptive softmax 204M 9.2 3.60 2.364 £ 0.005 1.982 72.91 16.67 2116 25.56
Adaptive softmax without 223M 1087 3.43 2.229 + 0.009 1914 71.82 17.10 23.02 25.72 ° . T
Nan D Jake M Ad Robert Colin Raffel
Mixture of softmaxes 232M 16.3T7 2.24 2.227 +0.017 1.821 76.77 17.62 22.75 26.82 an lng e arcus am o er S 0 ln e
Transparent attention M 11IT 833 218140014 187 5431 1040 2116 | 26.80
Dynamic convolution 257TM 1187 265 2403+0.009 2047 5830 1267 2116 17.03
Lightweight convolution 224M 1047 4.07 2.370 + 0.010 1.989 63.07 14.86 23.02 24.73
Evolved Transformer 217M 9.97 3.09 2.220 £+ 0.003 1.863 73.67 10.76 24.07 26.58
Synthesizer (dense) 224M 1147 347 2.334 +0.021 1.962 61.03 1427 16.14 26.63
Synthesizer (dense plus) 243M 12.6T 3.22 2.191 +0.010 1.840 73.98 16.96 23.81 26.71
Synthesizer (dense plus al- 243M 12.6T 3.01 2.180 £ 0.007 1.828 74.25 17.02 23.28 26.61
pha)
Synthesizer (factorized) 207M 10T 394 2341£0017 1968 6278 1539 23.55
Synthesizer (random) BAM 1017 408 23260012 2000 5427 1035 1956
Synthesizer (random plus) 202M 1207 363 218950004 1842 7332 1704 2487
Synthesizer (random plus ~ 292M 1207 2.186 + 0.007 1.828 75.24 17.08 24.08
alpha)
Universal Transformer 84M 40.0T 0.88 2.406 + 0.036 2.053 70.13 14.09 19.05 23.91
Mixture of experts 648 M 17T 3.20 2.148 + 0.006 1.785 74.55 18.13 24.08 26.94
Switch Transformer 1100M 1177 3.18 2.135 + 0.007 1.758 75.38 18.02 26.19 26.81
Funnel Transformer M 19T 430 22880008 1918 6730 1626 2275 2320
Weighted Transformer MM TLOT 059 2378£0021 1989 6904 1698 2302 2630
Product key memory A21M 3667 025 21550003 1798 7516 1704 2355 | 2673

70

Parting remarks

e Pretraining on Tuesday!
e Good luck on assignment 4!
e Remember to work on your project proposal!

71

